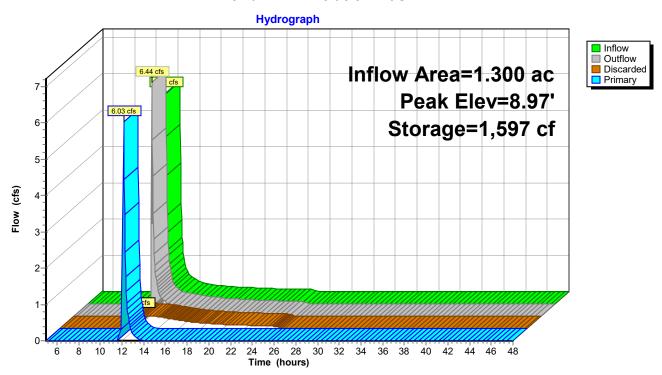
APPENDIX B-3C

RFP # 2025-12

BEACON ISLAND PHASE 3

Packaged Wastewater Treatment Plant
and

Fire Pump House and Marine Inlet


REFERENCE DOCUMENTS (3 of 5)

Reference Documents

Beacon Island Phase 3 Program

- NYSDEC Article 11 and 15 Permits. Dated 11/10/22 Page 1
- State Pollutant Discharge Elimination System (SPDES) Permit. Dated 10/1/23 Page 21
- Stormwater Pollution Protection Plan (SWPPP). Dated 6/20/22 Page 59
- Soil Management Plan. Dated 10/23/22 Page 564
- Landfill Closure Certification Report. Dated 10/21/24 Page 634
- Geotechnical Engineering Report. Dated 2/2/2023 Page 659
- Army Corps of Engineers Permit. Date 4/10/23 Page 779
- Community Air Monitoring Plan (CAMP). Dated 10/23/22 Page 806

Pond 4P: Infiltration Basin #2

18641.00-Proposed Condition_Chambers_CULVERTS Type || 24-hr | 100-Year Rainfall=6.11"

Prepared by McFarland Johnson

Printed 6/8/2022

HydroCAD® 10.10-5a s/n 02401 © 2020 HydroCAD Software Solutions LLC

Page 156

Summary for Pond 5P: Sedimentation Basin #1

Inflow Area = 1.200 ac, 37.50% Impervious, Inflow Depth = 2.08" for 100-Year event

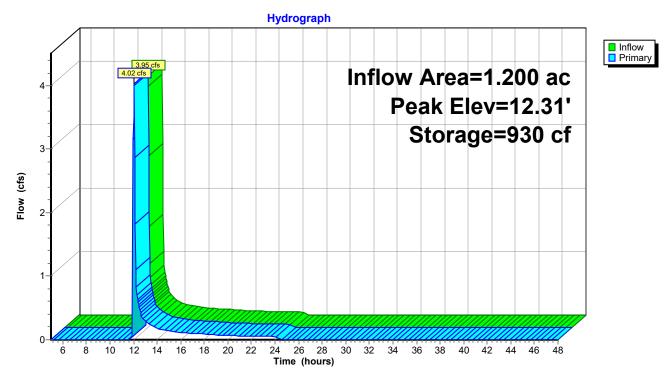
Inflow = 3.95 cfs @ 12.02 hrs, Volume= 0.208 af

Outflow = 4.02 cfs @ 12.04 hrs, Volume= 0.191 af, Atten= 0%, Lag= 1.1 min

Primary = 4.02 cfs @ 12.04 hrs, Volume= 0.191 af

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 12.31' @ 12.04 hrs Surf.Area= 632 sf Storage= 930 cf

Plug-Flow detention time= 59.3 min calculated for 0.191 af (92% of inflow)


Center-of-Mass det. time= 15.9 min (876.3 - 860.4)

Volume	Inv	<u>ert Ava</u>	il.Storage	Storage Des	cription	า		
#1	9.	00'	1,058 cf	Custom Sta	ge Dat	a (Irregular) List	ed below (Rec	alc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.S (cubic-f		Cum.Store (cubic-feet)	Wet.Are (sq-	·
9.0	00	41	25.8		0	0	2	1
10.0	00	150	46.7		90	90	16	67
11.0	00	320	66.6		230	320	35	55
12.0	00	550	86.4		430	749	60)8
12.5	50	687	96.2		309	1,058	75	58
Device	Routing	In	vert Outle	et Devices				
#1	Primary	12	2.00' Cha	nnel/Reach	using F	Reach 12R: Sedi	ment Basin Ov	erflow

Primary OutFlow Max=3.89 cfs @ 12.04 hrs HW=12.30' (Free Discharge) 1=Channel/Reach (Channel Controls 3.89 cfs @ 1.16 fps)

Page 157

Pond 5P: Sedimentation Basin #1

18641.00-Proposed Condition_Chambers_CULVERTS Type II 24-hr 100-Year Rainfall=6.11"

Prepared by McFarland Johnson

Printed 6/8/2022

HydroCAD® 10.10-5a s/n 02401 © 2020 HydroCAD Software Solutions LLC

Page 158

Summary for Pond 16P: Sedimentation Basin #2

Inflow Area = 1.300 ac, 57.69% Impervious, Inflow Depth = 3.18" for 100-Year event

Inflow = 5.76 cfs @ 12.12 hrs, Volume= 0.345 af

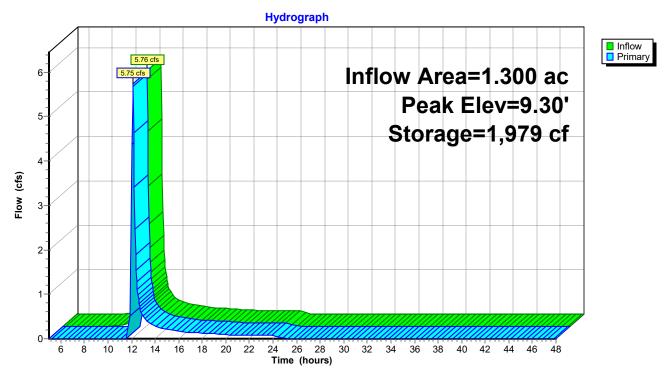
Outflow = 5.75 cfs @ 12.13 hrs, Volume= 0.305 af, Atten= 0%, Lag= 0.8 min

Primary = 5.75 cfs @ 12.13 hrs, Volume= 0.305 af

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 9.30' @ 12.13 hrs Surf.Area= 970 sf Storage= 1,979 cf

Plug-Flow detention time= 79.9 min calculated for 0.305 af (89% of inflow)

Center-of-Mass det. time= 21.8 min (865.8 - 843.9)


Volume	In	vert Ava	il.Storage	Storage Des	cription			
#1	5	.80'	2,389 cf	Custom Stag	ge Data	(Irregular) Liste	ed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.St (cubic-fe		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
5.8	30	224	80.0		0	0	224	
6.0	00	257	83.0		48	48	266	
7.0	00	438	98.0	;	344	392	500	
8.0	00	650	113.0		541	932	773	
9.0	00	892	128.0	•	768	1,700	1,085	
9.7	70	1,079	139.0	(689	2,389	1,337	
Device	Routing	g Ir	vert Outl	et Devices				
#1	Primary	y S	9.00' Cha	nnel/Reach	using Re	each 17R: Sedir	ment Basin Overflov	V

Primary OutFlow Max=5.60 cfs @ 12.13 hrs HW=9.30' (Free Discharge)

1=Channel/Reach (Channel Controls 5.60 cfs @ 1.17 fps)

Page 159

Pond 16P: Sedimentation Basin #2

Page 160

Summary for Pond AP-1: Analysis Point #1

Inflow Area = 68.100 ac, 20.36% Impervious, Inflow Depth > 3.95" for 100-Year event

Inflow = 205.59 cfs @ 12.00 hrs, Volume= 22.396 af

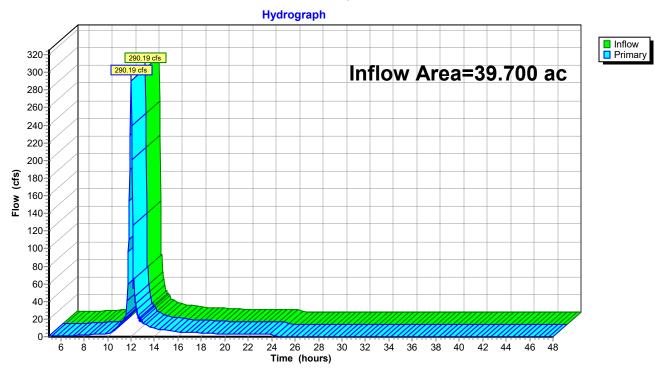
Primary = 205.59 cfs @ 12.00 hrs, Volume= 22.396 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Pond AP-1: Analysis Point #1

Page 161

Summary for Pond AP-2: Analysis Point #2


Inflow Area = 39.700 ac, 23.10% Impervious, Inflow Depth > 4.88" for 100-Year event

Inflow = 290.19 cfs @ 12.00 hrs, Volume= 16.144 af

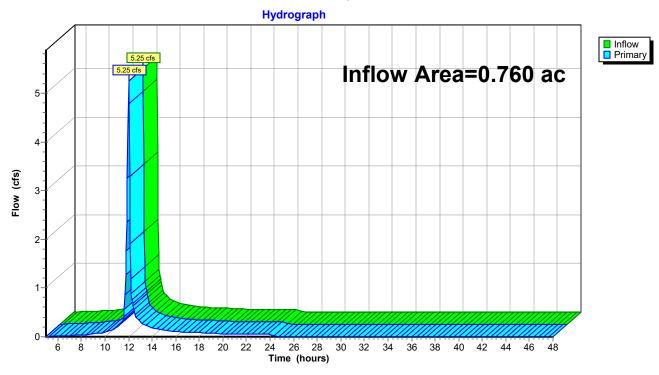
Primary = 290.19 cfs @ 12.00 hrs, Volume= 16.144 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Pond AP-2: Analysis Point #2

Page 162

Summary for Pond AP-3: Analysis Point #3


Inflow Area = 0.760 ac, 78.95% Impervious, Inflow Depth > 4.51" for 100-Year event

Inflow = 5.25 cfs @ 12.01 hrs, Volume= 0.286 af

Primary = 5.25 cfs @ 12.01 hrs, Volume= 0.286 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Pond AP-3: Analysis Point #3

Prepared by McFarland Johnson

Printed 6/8/2022

HydroCAD® 10.10-5a s/n 02401 © 2020 HydroCAD Software Solutions LLC

Page 163

Summary for Pond C-1: Chamber Series 1

Inflow Area = 10.300 ac, 66.70% Impervious, Inflow Depth > 5.60" for 100-Year event Inflow 84.97 cfs @ 11.98 hrs, Volume= 4.805 af 95.05 cfs @ 12.00 hrs, Volume= Outflow 4.444 af, Atten= 0%, Lag= 1.4 min Discarded = 0.29 cfs @ 12.00 hrs, Volume= 0.351 af Primary 60.22 cfs @ 12.00 hrs, Volume= 3.951 af Secondary = 34.55 cfs @ 12.00 hrs, Volume= 0.143 af

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 14.63' @ 12.00 hrs Surf.Area= 24,954 sf Storage= 35,013 cf

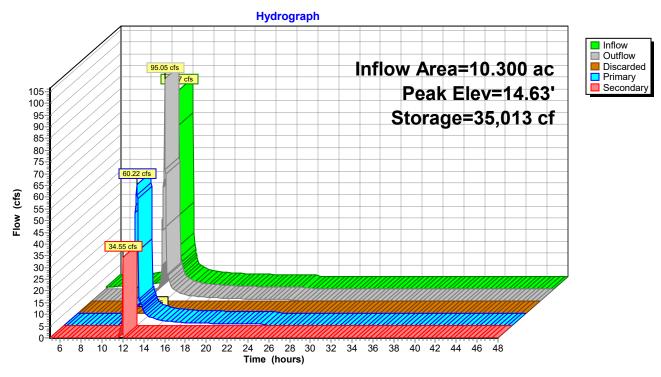
Plug-Flow detention time= 141.1 min calculated for 4.438 af (92% of inflow) Center-of-Mass det. time= 101.1 min (864.7 - 763.5)

Volume	Invert	Avail.Storage	Storage Description
#1B	6.00'	11,722 cf	37.08'W x 227.97'L x 5.50'H Field B
			46,496 cf Overall - 17,192 cf Embedded = 29,305 cf x 40.0% Voids
#2B	6.75'	17,192 cf	ADS_StormTech MC-3500 d +Cap x 155 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			155 Chambers in 5 Rows
			Cap Storage= +14.9 cf x 2 x 5 rows = 149.0 cf
#3	13.25'	6,100 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		35,013 cf	Total Available Storage

Storage Group B created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
13.25	600	0	0
13.75	4,900	1,375	1,375
14.00	8,200	1,638	3,013
14.25	16,500	3,088	6,100

Device	Routing	Invert	Outlet Devices
#1	Discarded	6.00'	0.500 in/hr Exfiltration over Surface area
#2	Primary	10.00'	36.0" Round Culvert
	-		L= 55.9' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 10.00' / 7.59' S= 0.0431 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf
#3	Secondary	14.24'	50.0' long x 0.7' breadth Concrete Curb
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50
			Coef. (English) 2.76 2.82 2.93 3.09 3.18 3.22 3.27 3.30 3.32
			3.31 3.32


Page 164

Discarded OutFlow Max=0.29 cfs @ 12.00 hrs HW=14.61' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.29 cfs)

Primary OutFlow Max=60.19 cfs @ 12.00 hrs HW=14.63' (Free Discharge) 2=Culvert (Inlet Controls 60.19 cfs @ 8.52 fps)

Secondary OutFlow Max=34.34 cfs @ 12.00 hrs HW=14.63' (Free Discharge) —3=Concrete Curb (Weir Controls 34.34 cfs @ 1.76 fps)

Pond C-1: Chamber Series 1

18641.00-Proposed Condition_Chambers_CULVERTS Type II 24-hr 100-Year Rainfall=6.11"

Prepared by McFarland Johnson

Printed 6/8/2022

HydroCAD® 10.10-5a s/n 02401 © 2020 HydroCAD Software Solutions LLC

Page 165

Summary for Pond C-4: Chamber Series 4

Inflow Area =	8.900 ac,	0.00% Impervious, Inflow	Depth > 5.34" for 100-Year even	t
Inflow =	69.96 cfs @	11.99 hrs, Volume=	3.959 af	
Outflow =	56.32 cfs @	12.04 hrs, Volume=	3.628 af, Atten= 20%, Lag= 3.3 i	min
Discarded =	0.19 cfs @	12.03 hrs, Volume=	0.264 af	
Primary =	56.13 cfs @	12.04 hrs, Volume=	3.364 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 15.22' @ 12.04 hrs Surf.Area= 16,391 sf Storage= 26,993 cf

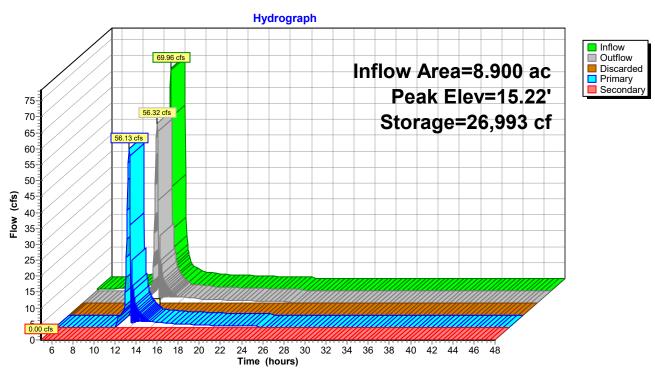
Plug-Flow detention time= 137.4 min calculated for 3.627 af (92% of inflow) Center-of-Mass det. time= 92.3 min (865.1 - 772.9)

Volume	Invert	Avail.Storage	Storage Description
#1B	6.00'	8,911 cf	29.92'W x 213.63'L x 5.50'H Field B
			35,151 cf Overall - 12,874 cf Embedded = 22,277 cf x 40.0% Voids
#2B	6.75'	12,874 cf	ADS_StormTech MC-3500 d +Cap x 116 Inside #1
			Effective Size= 70.4"W x 45.0"H => 15.33 sf x 7.17'L = 110.0 cf
			Overall Size= 77.0"W x 45.0"H x 7.50'L with 0.33' Overlap
			116 Chambers in 4 Rows
			Cap Storage= +14.9 cf x 2 x 4 rows = 119.2 cf
#3	14.10'	8,015 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		29,800 cf	Total Available Storage

Storage Group B created with Chamber Wizard

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
14.10	400	0	0
14.60	2,400	700	700
14.80	6,300	870	1,570
15.10	10,000	2,445	4,015
15.50	10,000	4,000	8,015

Device	Routing	Invert	Outlet Devices
#1	Discarded	6.00'	0.500 in/hr Exfiltration over Surface area
#2	Primary	11.00'	36.0" Round Culvert
			L= 24.3' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 11.00' / 9.42' S= 0.0650 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 7.07 sf
#3	Secondary	15.50'	100.0' long x 0.5' breadth Wharf
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32


Page 166

Discarded OutFlow Max=0.19 cfs @ 12.03 hrs HW=15.16' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=55.90 cfs @ 12.04 hrs HW=15.20' (Free Discharge) 2=Culvert (Inlet Controls 55.90 cfs @ 7.91 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=6.01' (Free Discharge) 3=Wharf (Controls 0.00 cfs)

Pond C-4: Chamber Series 4

18641.00-Proposed Condition_Chambers_CULVERTS Type II 24-hr 100-Year Rainfall=6.11"

Prepared by McFarland Johnson

Printed 6/8/2022

HydroCAD® 10.10-5a s/n 02401 © 2020 HydroCAD Software Solutions LLC

Page 167

Summary for Pond C-5: Chamber Series 5

Inflow Area =	5.200 ac,	0.00% Impervious, Inflow	Depth > 5.34" for	or 100-Year event
Inflow =	41.34 cfs @	11.98 hrs, Volume=	2.313 af	
Outflow =	30.89 cfs @	12.05 hrs, Volume=	2.057 af, Atten=	= 25%, Lag= 3.9 min
Discarded =	0.42 cfs @	12.05 hrs, Volume=	0.401 af	
Primary =	30.47 cfs @	12.05 hrs, Volume=	1.656 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 15.35' @ 12.05 hrs Surf.Area= 18,202 sf Storage= 26,138 cf

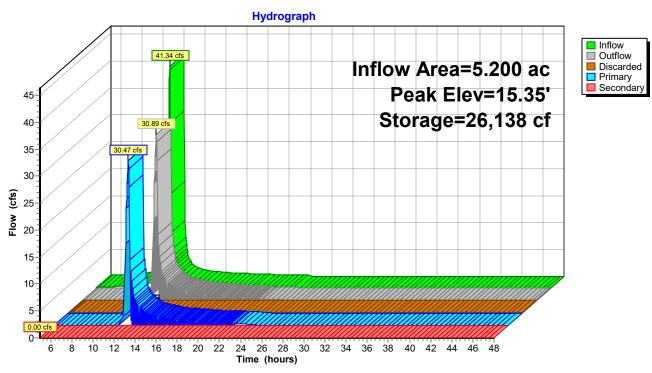
Plug-Flow detention time= 242.1 min calculated for 2.054 af (89% of inflow) Center-of-Mass det. time= 188.6 min (961.1 - 772.5)

Volume	Invert	Avail.Storage	Storage Description
#1B	6.00'	7,757 cf	28.50'W x 168.47'L x 6.75'H Field B
			$32,409 \text{ cf Overall} - 13,016 \text{ cf Embedded} = 19,393 \text{ cf } \times 40.0\% \text{ Voids}$
#2B	6.75'	13,016 cf	ADS_StormTech MC-4500 b +Cap x 120 Inside #1
			Effective Size= 90.4"W x 60.0"H => 26.46 sf x 4.03'L = 106.5 cf
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			120 Chambers in 3 Rows
			Cap Storage= +39.5 cf x 2 x 3 rows = 237.0 cf
#3	14.60'	7,420 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		28,193 cf	Total Available Storage

Storage Group B created with Chamber Wizard

	Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
•	14.60	200	Ó	0
	14.80	1,000	120	120
	15.00	10,000	1,100	1,220
	15.50	14,800	6,200	7,420

Device	Routing	Invert	Outlet Devices
#1	Discarded	6.00'	1.000 in/hr Exfiltration over Surface area
#2	Primary	12.60'	36.0" Round Culvert
			L= 62.8' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 12.60' / 12.29' S= 0.0049 '/' Cc= 0.900
			n= 0.013 Cast iron, coated, Flow Area= 7.07 sf
#3	Secondary	15.50'	100.0' long x 0.5' breadth Wharf
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32


Page 168

Discarded OutFlow Max=0.42 cfs @ 12.05 hrs HW=15.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.42 cfs)

Primary OutFlow Max=30.43 cfs @ 12.05 hrs HW=15.35' (Free Discharge) 2=Culvert (Barrel Controls 30.43 cfs @ 5.87 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=6.01' (Free Discharge) 3=Wharf (Controls 0.00 cfs)

Pond C-5: Chamber Series 5

Appendix C

Water Quality and Runoff Reduction Volume Calculations

Version 1.8 Last Updated: 11/09/2015

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to post-	
is this project subject to chapter 10 of the W13 Design Mandai (i.e. WQV is equal to post-	
development 1 year runoff volume)?	No

Design Point:

P= 1.20 inch

Manually enter P, Total Area and Impervious Cover.

Breakdown of Subcatchments								
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	npervious Rv		Description		
1	10.30	10.20	99%	0.94	42,055			
2	5.50	5.30	96%	0.92	21,884			
3	11.00	10.60	96%	0.92	43,769			
4	8.90	8.60	97%	0.92	35,505			
5	5.20	4.90	94%	0.90	20,258			
6	11.80	11.60	98%	0.93	47,846			
7	8.70	8.40	97%	0.92	34,681			
8	2.90	2.00	69%	0.67	8,437			
9	5.80	3.10	53%	0.53	13,361			
10	0.00	0.00						
Subtotal (1-30)	76.70	65.89	86%	0.82	273,874	Subtotal 1		
Total	76.70	65.89	86%	0.82	273,874	Initial WQv		

Identify Runoff Reduction Techniques By Area							
Technique	Total Contributing Area	Contributing Impervious Area	Notes				
	(Acre)	(Acre)					
Conservation of Natural Areas	4.00	0.00	minimum 10,000 sf				
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet				
Filter Strips	0.00	0.00					
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious area may be subtracted per tree				
Total	4.00	0.00					

Recalcula	Recalculate WQv after application of Area Reduction Techniques							
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft³)			
"< <initial td="" wqv"<=""><td>76.70</td><td>65.89</td><td>86%</td><td>0.82</td><td>273,874</td></initial>	76.70	65.89	86%	0.82	273,874			
Subtract Area	-4.00	0.00						
WQv adjusted after Area Reductions	72.70	65.89	91%	0.87	273,007			
Disconnection of Rooftops		0.00						
Adjusted WQv after Area Reduction and Rooftop Disconnect	72.70	65.89	91%	0.87	273,007			
WQv reduced by Area Reduction techniques					868			

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

		Additio	nal Subcatchment	<u> </u>			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Description	
11	4.00	0.00	0%	0.05	868	Conservation of Natural Areas	
12	0.00	0.00					
13	1.10	0.45	41%	0.42	1,995	Infiltration Basin	
14	1.10	0.55	50%	0.50	2,386	Infiltration Basin	
15	0.10	0.05	50%	0.50	217	Dry Swale	
16	0.00	0.00					
17	0.30	0.14	47%	0.47	612	Dry Swale	
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
Subtotal	6.60	1.19	18%	0.21	6,077	Subtotal	

Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

All Subcatchments							
Catchment	Total Area	Impervious	Percent	Runoff	WQv	Description	
Catchinicht	7014171164	Cover	Impervious	Coefficient		Description	
	(Acres)	(Acres)	%	Rv	(ft³)		
1	10.30	10.20	0.99	0.94	42055.46		
2	5.50	5.30	0.96	0.92	21,884		
3	11.00	10.60	0.96	0.92	43768.91		
4	8.90	8.60	0.97	0.92	35505.30		
5	5.20	4.90	0.94	0.90	20257.76		
6	11.80	11.60	0.98	0.93	47846.49		
7	8.70	8.40	0.97	0.92	34681.11		
8	2.90	2.00	0.69	0.67	8437.12		
9	5.80	3.10	0.53	0.53	13360.58		
10	0.00	0.00					
11	4.00	0.00	0.00	0.05	867.57	Conservation of Natural Areas	
12	0.00	0.00					
13	1.10	0.45	0.41	0.42	1995.41	Infiltration Basin	
14	1.10	0.55	0.50	0.50	2385.82	Infiltration Basin	
15	0.10	0.05	0.50	0.50	216.89	Dry Swale	
16	0.00	0.00					
17	0.30	0.14	0.47	0.47	611.64	Dry Swale	
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							

	Runoff Reduction Volume and Treated volumes							
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated		
			(acres)	(acres)	cf	cf		
	Conservation of Natural Areas	RR-1	4.00	0.00				
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00				
gnc	Tree Planting/Tree Pit	RR-3	0.00	0.00				
Rec	Disconnection of Rooftop Runoff	RR-4		0.00				
me	Vegetated Swale	RR-5	0.00	0.00	0			
nlo	Rain Garden	RR-6	0.00	0.00	0			
a/V	Stormwater Planter	RR-7	0.00	0.00	0			
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0			
	Porous Pavement	RR-9	0.00	0.00	0			
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0			
	Infiltration Trench	I-1	0.00	0.00	0	0		
1Ps city	Infiltration Basin	I-2	26.60	24.70	62378	7042		
I SN apa	Dry Well	I-3	0.00	0.00	0	0		
larc v C	Underground Infiltration System	I-4						
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.00	0.00	0	0		
	Dry swale	0-1	0.40	0.19	87	766		
	Micropool Extended Detention (P-1)	P-1				21798.000		
	Wet Pond (P-2)	P-2						
	Wet Extended Detention (P-3)	P-3						
	Multiple Pond system (P-4)	P-4						
Sc	Pocket Pond (p-5)	P-5						
ME	Surface Sand filter (F-1)	F-1						
rd 5	Underground Sand filter (F-2)	F-2						
Standard SMPs	Perimeter Sand Filter (F-3)	F-3						
Stai	Organic Filter (F-4)	F-4				181790.000		
	Shallow Wetland (W-1)	W-1						
	Extended Detention Wetland (W-2	W-2						
	Pond/Wetland System (W-3)	W-3						
	Pocket Wetland (W-4)	W-4						
	Wet Swale (O-2)	0-2		0.00	222			
	Totals by Area Reduction		4.00	0.00	868			
	Totals by Volume Reduction	\rightarrow	0.00	0.00	0			
	Totals by Standard SMP w/RRV	\rightarrow	27.00	24.89	62466	7808		
	Totals by Standard SMP	\rightarrow	0.00	0.00		203588		
Т	otals (Area + Volume + all SMPs)	\rightarrow	31.00	24.89	63,333	211,396		
	Impervious Cover √	error						

Minimum RRv

Enter the Soils Da	ta for the site	
Soil Group	Acres	S
Α	2.30	55%
В		40%
С		30%
D	70.40	20%
Total Area	72.7	
Calculate the Min	imum RRv	
S =	0.21	
Impervious =	65.89	acre
Precipitation	1.195	in
Rv	0.95	
Minimum RRv	57,313	ft3
	1.32	af

Planning

Practice	Description	Application
Preservation of Undisturbed Areas	Delineate and place into permanent conservation undisturbed forests, native vegetated areas, riparian corridors, wetlands, and natural terrain.	Considered & Applied
Preservation of Buffers	Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands.	Considered & Not Applied
Reduction of Clearing and Grading	Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities.	Considered & Applied
Locating Development in Less Sensitive Areas	Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact.	Considered & Applied
Open Space Design	Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources.	N/A
Soil Restoration	Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices.	N/A
Roadway Reduction	Minimize roadway widths and lengths to reduce site impervious area	Considered &
Sidewalk Reduction	Minimize sidewalk lengths and widths to reduce site impervious area	Applied Considered & Applied
Driveway Reduction	Minimize driveway lengths and widths to reduce site impervious area	N/A
Cul-de-sac Reduction	Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover.	N/A
Building Footprint Reduction	Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio.	Considered & Applied
Parking Reduction	Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate.	Considered & Applied

NOI QUESTIONS

#	NOI Question	Reported Value		
		cf	af	
28	Total Water Quality Volume (WQv) Required	273874	6.287	
30	Total RRV Provided	63333	1.454	
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	57313	1.316	
32a	Is RRv Provided ≥ Minimum RRv Required?	Ye	S	
33a	Total WQv Treated	211396	4.853	
34	Sum of Volume Reduced & Treated	274729	6.307	
34	Sum of Volume Reduced and Treated	274729	6.307	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

	Apply Peak Flow Attenuation					
36	Channel Protection	Срv				
37	Overbank	Qp				
37	Extreme Flood Control	Qf				
	Are Quantity Control requirements met?	Yes	Plan Completed			

		1							
Design Point:	_								
		nter Site Data		Area to I	be Treated	by Practice			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description		
1	10.30	10.20	0.99	0.94	42055.46	1.20			
Reduced by Disc	onnection of		99%	0.94	42,055	< <wqv adj<br="" after="">Disconnected Ro</wqv>	-		
routed to this pr		tnacis nocieu	ticeu ioi an pra	detices	0	ft ³			
- 61		Pretrea	tment Technic			ging			
Infiltration Rate	!		1.50	in/hour	Okay				
Pretreatment S	25% minimum; nt Sizing 25 % WQv 50% if >2 in/hr 100% if >5in/hour								
Pretreatment R	equired Volu	ime	10,514	10,514 ft ³					
Pretreatment P	rovided		11,000	ft ³					
Pretreatment T	echniques ut	ilized	Other		•				
			Size An Inf	iltration E	Basin				
Design Volume	42,055	ft ³	WQv						
Basal Area Required	42,055	ft²	Infiltration pr through the f		-	ned to exfiltrate	the entire WQv		
Basal Area Provided	23,609	ft ²		•	•				
Design Depth	1.00	ft							
Volume Provided	23,609	ft ³	Storage Volum pretreatment	•	led in infiltr	ation basin area	(not including		
			Determine R	unoff Red	duction				
RRv	21,248	ft ³	90% of the st	orage pro	ovided in th	e basin or WQv	whichever is smaller		
Volume Treated	20,807	ft ³	This is the po	rtion of th	ne WQv thai	t is not reduced/i	infiltrated		
Sizing V			The infiltration			storage equal to	o or greater than the		

				0.0111					
Design Point:									
	E	nter Site Data	For Drainage	Area to	be Treated	by Practice			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description		
4	8.90	8.60	0.97	0.92	35505.30	1.20			
Reduced by Disc	connection of		97%	0.92	35,505	< <wqv adj<="" after="" td=""><td>-</td></wqv>	-		
<u>Pnæੀ ne portio</u> routed to this pr		'tilat is not re u	uceu ioi an pr a	actices	0	ft ³			
		Protros	tment Technic	nues to D	revent Clos	ging			
Infiltration Rate	<u> </u>	Tretrea	0.80	in/hour	Okay	5'''5			
Pretreatment Sizing			25	% WQv	25% minimum; 50% if >2 in/hr 100% if >5in/hour				
Pretreatment R	equired Volu	ıme	8,876	ft ³	100% 13 1 311/11041				
Pretreatment P	-		10,000	ft ³					
Pretreatment T		ilized	Other -	Ŋι					
			Size An Inf	iltration E	Basin				
Design Volume	35,505	ft ³	WQv						
Basal Area Required	35,505	ft ²	Infiltration pr through the f		_	-	the entire WQv		
Basal Area Provided	20,516	ft ²							
Design Depth	1.00	ft							
Volume Provided	20,516	ft ³	Storage Volum pretreatment	•	ded in infiltr	ation basin area	(not including		
			Determine R	unoff Red	duction				
RRv	18,464	ft ³	90% of the storage provided in the basin or WQv whichever is smaller						
Volume Treated	17,041	ft ³	This is the po	rtion of th	he WQv thai	t is not reduced/	infiltrated		

WQv of the contributing area.

Sizing √

The infiltration basin must provide storage equal to or greater than the

Design Point:									
		nter Site Data	a For Drainage	Area to	be Treated	by Practice			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description		
5	5.20	4.90	0.94	0.90	20257.76	1.20			
Reduced by Disc	connection of		94%	0.90	20,258 < <wqv adjusting="" after="" disconnected="" for="" rooftops<="" td=""></wqv>				
Enæੀ (ne por uo routed to this pr		that is not red	uceu for all pro	actices		ft ³			
		Drotros	tment Technic	nuos to Di	rovent Class	aina			
Infiltration Rate	<u> </u>	Pretiea	0.50		Okay	RitiR			
Pretreatment Sizing			25	in/hour Okay 25% minimum; % WQv 50% if >2 in/hr 100% if >5in/hour					
Pretreatment R	equired Volu	ıme	5,064	ft ³					
Pretreatment P		·····	5,100	ft ³					
Pretreatment T	echniques ut	ilized	Other	<u>, , , , , , , , , , , , , , , , , , , </u>					
			Size An Inf	iltration E	Basin				
Design Volume	20,258	ft ³	WQv						
Basal Area Required	20,258	ft ²	Infiltration pi through the f		_	-	the entire WQv		
Basal Area Provided	20,473	ft ²							
Design Depth	1.00	ft							
Volume Provided	20,473	ft ³	Storage Volu	•	led in infiltr	ation basin area	(not including		
			Determine R	unoff Red	duction				
RRv	18,426	ft ³	90% of the st	torage pro	ovided in th	e basin or WQv	whichever is smalle		
Volume Treated	1,832	ft ³	This is the po	rtion of th	ne WQv thai	t is not reduced/	infiltrated		
Sizing √	ОК		The infiltration	on basin n	nust provide	storage equal t	o or greater than th		

WQv of the contributing area.

Sizing √

		,							
Design Point:									
	E	nter Site Data	For Drainage	Area to	be Treated	by Practice			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description		
13	1.10	0.45	0.41	0.42	1995.41	1.20	Infiltration Basin		
Reduced by Disc	connection of		41%	0.42	1,995	< <wqv additional="" after="" control="" of="" td="" th<="" the=""><td></td></wqv>			
routed to this pi		That is not red	uceu for an pro	actices	ft ³				
Pretreatment Techniques to Prevent Clogging									
Infiltration Rate	,		4.50	in/hour	Okay				
			0/14/0	25% minin	· ·				
Pretreatment S	izing		50 % WQv 50% if >2 in/hr 100% if >5in/hour						
Pretreatment R	equired Volu	ıme	998	ft ³	1100% IJ >5	III/IIUUI			
Pretreatment P			1,058	ft ³					
Pretreatment T		ilized	Sedimentatio						
	1. 2		Size An Inf		Basin				
Design Volume	1,995	ft ³	WQv						
Basal Area Required	512	ft ²	Infiltration pr through the f		_	ned to exfiltrate	the entire WQv		
Basal Area Provided	639	ft ²							
Design Depth	3.90	ft							
Volume	2,492	ft ³	Storage Volu	me provid	ded in infiltr	ation basin area	(not including		
Provided	2,432) t	pretreatment						
			Determine R	unoff Red	duction				
RRv	1,995	ft ³	90% of the st	orage pro	ovided in th	e basin or WQv	whichever is smaller		
Volume Treated	0	ft ³	This is the po	rtion of th	he WQv tha	t is not reduced/	infiltrated		

WQv of the contributing area.

Sizing √

ОК

The infiltration basin must provide storage equal to or greater than the

Design Point:									
Design Formu		nter Site Data	For Drainage	Area to	be Treated	by Practice			
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv Precipitation (ft 3) (in) Description				
14	1.10	0.55	0.50	0.50	2385.82	1.20	Infiltration Basin		
Reduced by Disc	connection of		50%	0.50	2,386 < <wqv adjusting="" after="" disconnected="" for="" rooftops<="" td=""></wqv>				
routed to this pr		uceu ioi ali pi	actices	0	ft ³				
	Pretreatment Techniques to Prevent Clogging								
Infiltration Rate	<u> </u>	Tietica	12.00	in/hour	Okay	8'''8			
Pretreatment S	100	% WQv	25% minimum; 50% if >2 in/hr 100% if >5in/hour						
Pretreatment R	equired Volu	me	2,386	2,386 ft ³					
Pretreatment P	rovided		2,389 ft ³						
Pretreatment T	echniques ut	ilized	Sedimentatio	n Basin					
			Size An Inf	iltration E	Basin				
Design Volume	2,386	ft ³	WQv						
Basal Area Required	612	ft ²	Infiltration pr through the f			gned to exfiltrate	the entire WQv		
Basal Area Provided	640	ft ²		-	-				
Design Depth	3.90	ft							
Volume Provided	2,494	ft ³	Storage Volum pretreatment	·	led in infiltr	ation basin area	(not including		
			Determine R	unoff Red	duction				
RRv	2,245	ft ³	90% of the st	orage pro	ovided in th	ne basin or WQv	whichever is smaller		
Volume Treated	141	ft ³	This is the po	rtion of th	ne WQv tha	t is not reduced/i	infiltrated		
Sizing V	OK		The infiltration		•	e storage equal to	o or greater than the		

Dry Swale Worksheet

Design Point:								
	Enter	Site Data For	Drainage Area	to be T	reated by	Practice		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description	
15	0.10	0.05	0.50	0.50	216.89	1.20	Dry Swale	
Enter Imperviou by Disconnection	n of Rooftops	0.00	50%	0.50	217 < WQv after adjusting for Disconnected Rooftops			
Pretreatment Provided			,	. 2		Pretreatment T	echnique	
Pretrea	atment (10% of		22	ft ³				
		Calculat	e Available St	orage C	apacity			
Bottom Width	1	ft	_			-	tht feet to avoid less than two fee	
Side Slope (X:1)	2	Okay	Channels shall be designed with moderate side slopes (flatter than 3:1) for most conditions. 2:1 is the absolute maximum side slope					
Longitudinal Slope	0%	Okay	Maximum longitudinal slope shall be 4%					
Flow Depth	0.75	ft	Maximum ponding depth of one foot at the mid-point of the channel, and a maximum depth of 18" at the end point of the channel (for storage of the WQv)					
Top Width	4	ft				Γ _W		
Area	1.88	sf	1		:		7	
Minimum Length	104	ft				d		
Actual Length	105	ft	1			3_{W}		
End Point Depth check	1.00	Okay	A maximum of storage of the			end point of the	channel (for	
Storage Capacity	219	ft ³						
Soil Group (HSG	i)	•	А					
			Runoff Redu	ıction				
Is the Dry Swale practice?	contributing flo	ow to another	No	Select	Practice			
RRv	87	ft ³	Runnoff Red		•	in HSG A and B	and 20% in HSG	
Volume Treated	129	ft ³	This is the dif				ted and the runo	
Volume Directed	0	ft ³	This volume i	This volume is directed another practice				
Volume √	Okay		Check to be s	ure that	channel is	long enough to	store WQv	

Dry Swale Worksheet

Design Point:							
	Enter	Site Data For	Drainage Area	a to be 1	Treated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description
17	0.30	0.14	0.47	0.47	611.64	1.20	Dry Swale
Enter Imperviou by Disconnection		0.00	47%	0.47	612	612 < WQv after adjusting for Disconnected Rooftops	
		nent Provided	,			Pretreatment To	echnique
Pretrea	atment (10% of		61	ft ³			
		Calculat	e Available St	orage C	apacity		
Bottom Width	2	ft	_			-	ht feet to avoid less than two feet
Side Slope (X:1)	3	Okay	Channels shall be designed with moderate side slopes (flatter than 3:1) for most conditions. 2:1 is the absolute maximum side slope				
Longitudinal Slope	3%	Okay	Maximum longitudinal slope shall be 4%				
Flow Depth	1	ft	Maximum ponding depth of one foot at the mid-point of the channel, and a maximum depth of 18" at the end point of the channel (for storage of the WQv)				
Top Width	8	ft			•	T_w	
Area	5.00	sf]			d	
Minimum Length	110	ft				ů /	
Actual Length	115	ft			1	B_W	
End Point Depth check	1.50	Okay	A maximum of the		18" at the	end point of the	channel (for
Storage Capacity	636	ft ³					
Soil Group (HSG	i)		D				
			Runoff Redu	ıction			
Is the Dry Swale practice?	e contributing flo	ow to another	No	Select	Practice		
RRv	127	ft ³	Runnoff Red			in HSG A and B	and 20% in HSG (
Volume Treated	484	ft ³	This is the dif			•	ted and the runof
Volume Directed	0	ft ³	This volume i	s directe	ed another	practice	
Volume √	Okay		Check to be s	ure that	t channel is	long enough to	store WQv

Conservation of Natural Areas

Design Point:									
Enter Site Data For Drainage Area to be Treated by Practice									
Catchment Number	Area Impervious Ry						Description		
11	4.00	0.00	0.00	0.05	867.57	1.20	Conservation of Natural Areas		
			Design E	lements					
Is Contiguous A	rea ≥ 10,000 t	ft2?				Yes			
Will limits of dis		•			•	Yes			
Is the Conserva			•		asement	Yes			
Does the easen managed and b			al area vegeta	tion will b	e e	Yes			
Does the conse	rvation area r	eceive runoff	from other co	ntributin	g areas?	No			
Does Conservat	ion Area draii	n to a Design	Point?			Yes	Yes		
Is Sheet Flow to being Used for	•	fer or anothe	r area based p	ractice al	ready	No			
Are All Criteria	in Section 5.3	.1 Met?	Yes						
			Area Reductio	n Adjustr	ments				
	Subtract	4.00	Acres from To	otal Area					
	Subtract	0.00	Acres from To	otal Impe	rvious Ar	ea			

Date:1/18/2022Project:Port of AlbanyLocation:Albany, NYPrepared For:Natalie Olivieri

Purpose: To calculate the water quality flow rate (Qwq) over a given site area. In this situation the WQv

to be analyzed is the runoff produced by the first 1.2 inch(es) of rainfall, per Fig 4.1 of the New

York State Stormwater Management Design Manual

Reference: United States Department of Agriculture Natural Resources Conservation Service TR-55

Manual, New York State Stormwater Management Design Manual - 2015

Formulas: $WQv = \frac{(P)(R_v)(A)}{12}$

 $R_v = (0.05 + 0.009(I))$

 $CN = 1000/[10+5P+10Qa-10(Qa^2+1.25QaP)^{1/2}]$

 $Qwq = (q_u)^*(A)^*(Qa)$

Structure:	WQU 1		Structure:	WQU 2		Structure:	WQU 3	
Р	1.20	in.	Р	1.20	in.	Р	1.20	in.
Α	10.300	ac	Α	5.500	ac	Α	11.000	ac
I	99.03	%	I	96.36	%	I	96.36	%
t_c	10.0	min.	t_c	10.0	min.	t _c	10.4	min.
t_c	0.167	hr.	t _c	0.167	hr.	t _c	0.173	hr.
R_v	0.941		R_v	0.917		R_v	0.917	
43% WQv	0.413	ac-ft	90% WQv	0.504	ac-ft	90% WQv	1.009	ac-ft
43% WQv	18003.65	ft ³	90% WQv	21971.66	ft ³	90% WQv	43938.97	ft ³
Qa	1.129	in.	Qa	1.101	in.	Qa	1.100	in.
CN	97.00		CN	94.00	1	CN	95.00	
l _a	0.062		I_a	0.128]	I_a	0.105	
I _a /P	0.052		I _a /P	0.107		I _a /P	0.088	
qu	1000	(csm/in)	qu	1000	(csm/in)	qu	1000	(csm/in)
Α	0.01609	miles ²	Α	0.00859	miles ²	Α	0.01719	miles ²
Qwq	7.81	cfs	Qwq	9.46	cfs	Qwq	18.91	cfs

Date:1/18/2022Project:Port of AlbanyLocation:Albany, NYPrepared For:Natalie Olivieri

Purpose: To calculate the water quality flow rate (Qwq) over a given site area. In this situation the WQv

to be analyzed is the runoff produced by the first 1.2 inch(es) of rainfall, per Fig 4.1 of the New

York State Stormwater Management Design Manual

Reference: United States Department of Agriculture Natural Resources Conservation Service TR-55

Manual, New York State Stormwater Management Design Manual - 2015

Formulas: $WQv = \frac{(P)(R_v)(A)}{12}$

 $R_v = (0.05 + 0.009(I))$

 $CN = 1000/[10+5P+10Qa-10(Qa^2+1.25QaP)^{1/2}]$

 $Qwq = (q_u)^*(A)^*(Qa)$

Structure:	WQU 4		Structure:	WQU 6	
Р	1.20	in.	Р	1.20	in.
Α	8.900	ac	Α	11.800	ac
1	96.63	%	l [98.31	%
t_c	10.0	min.	t _c	10.0	min.
t_c	0.167	hr.	t _c	0.167	hr.
R_v	0.92		R_{v}	0.935	
42% WQv	0.342	ac-ft	90% WQv	1.103	ac-ft
42% WQv	14912.10	ft ³	90% WQv	48059.75	ft ³
Qa	1.104	in.	Qa	1.122	in.
CN	94.00		CN	96.00	
I_a	0.128		l _a	0.083	
I _a /P	0.107		I _a /P	0.069	
qu	1000	(csm/in)	qu	1000	(csm/in)
Α	0.01391	miles ²	Α	0.01844	miles ²
Qwq	6.44	cfs	Qwq	20.69	cfs

Date:1/18/2022Project:Port of AlbanyLocation:Albany, NYPrepared For:Natalie Olivieri

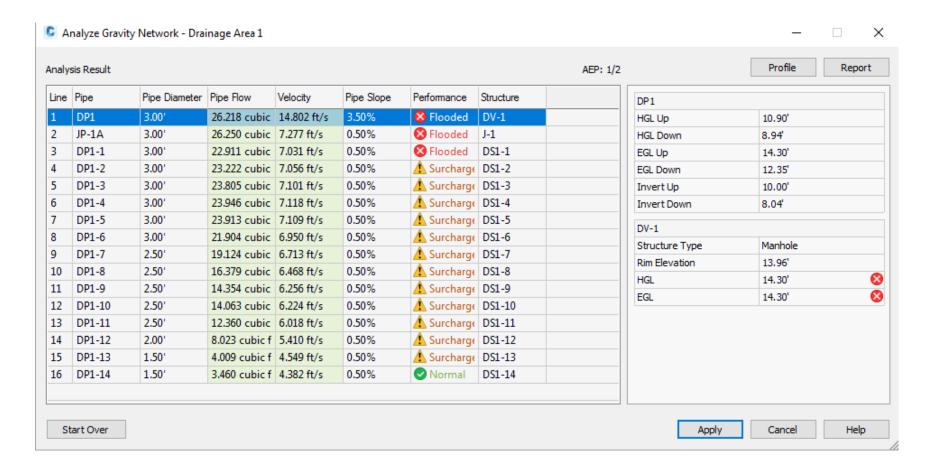
Purpose: To calculate the water quality flow rate (Qwq) over a given site area. In this situation

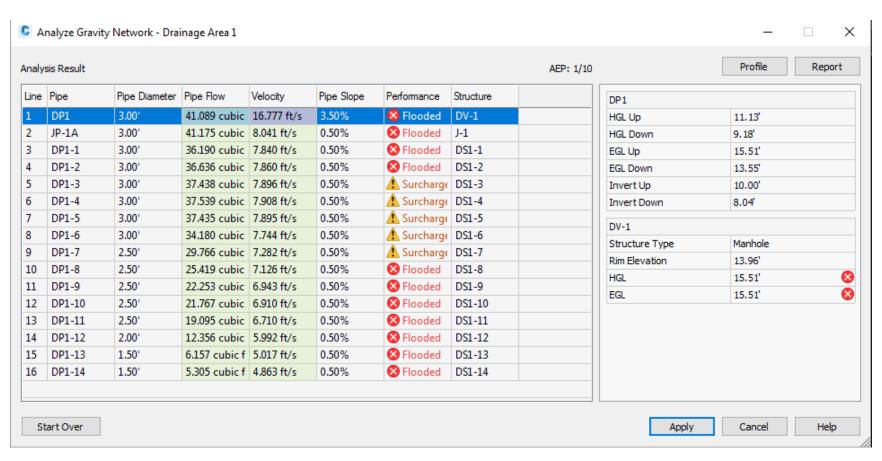
the WQv to be analyzed is the runoff produced by the first 1.2 inch(es) of rainfall, per

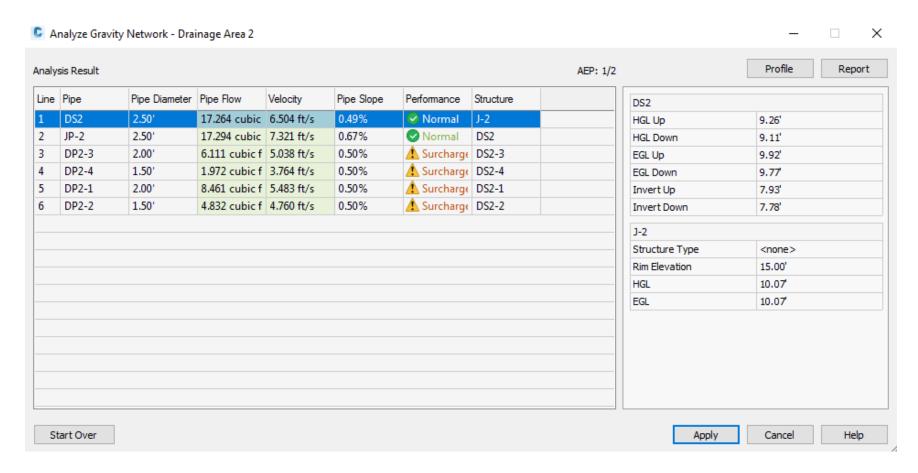
Fig 4.1 of the New York State Stormwater Management Design Manual

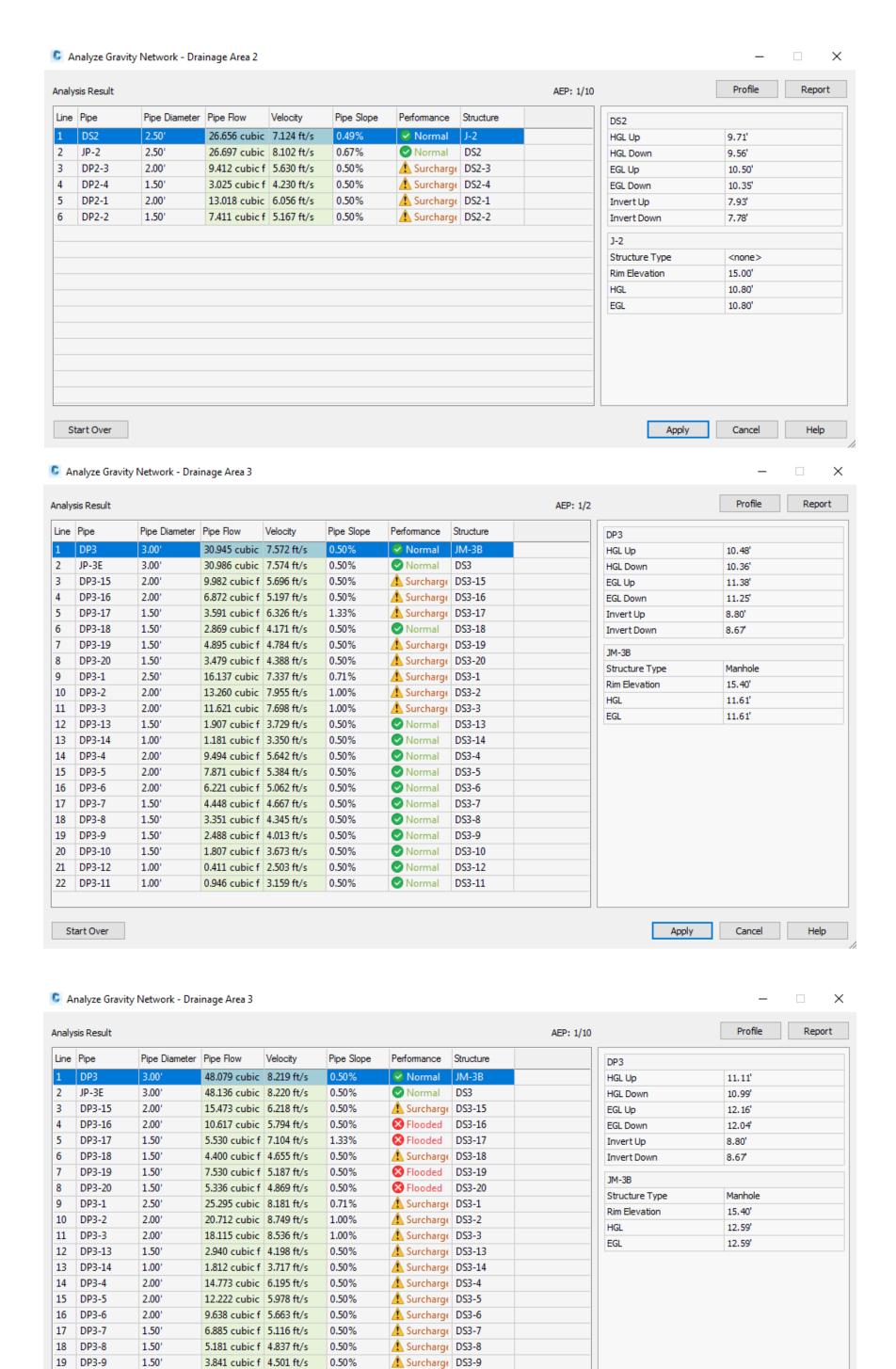
Reference: United States Department of Agriculture Natural Resources Conservation Service TR-

55 Manual, New York State Stormwater Management Design Manual - 2015


Formulas: $WQv = \frac{(P)(R_v)(A)}{12}$


 $R_v = (0.05 + 0.009(I)$


 $CN = 1000/[10+5P+10Qa-10(Qa^2+1.25QaP)^{1/2}]$


 $Qwq = (q_u)^*(A)^*(Qa)$

WQU7 Structure: Ρ 1.20 in. Α 8.700 ac 96.55 % I t_{c} 10.5 min. t_{c} 0.175 hr. 0.919 R_v 0.800 90% WQv ac-ft 90% WQv 34826.22 ft³ 1.103 Qa in. CN 96.00 0.083 I_a I_a/P 0.069 1000 (csm/in) qu Α 0.01359 miles² 14.99 cfs Qwq

Apply

Cancel

Help

▲ Surcharge DS3-10

▲ Surcharge DS3-12 ▲ Surcharge DS3-11

20

DP3-10

21 DP3-12

22 DP3-11

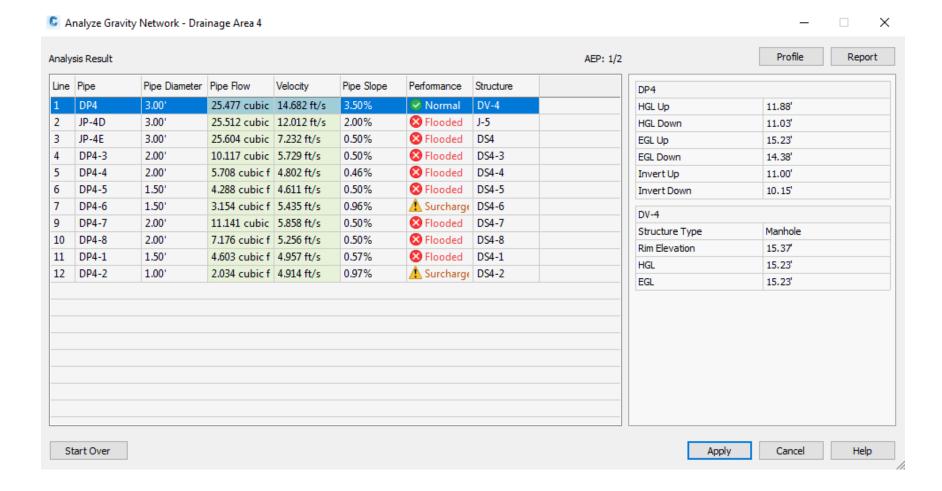
Start Over

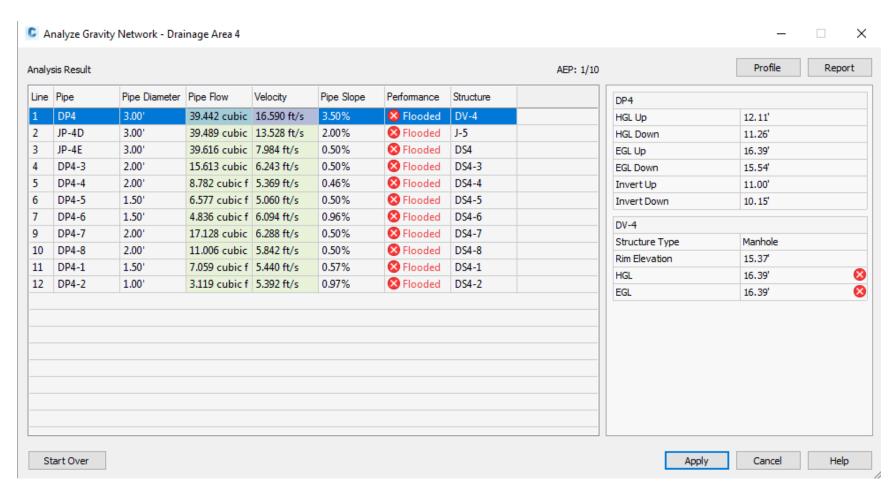
1.50

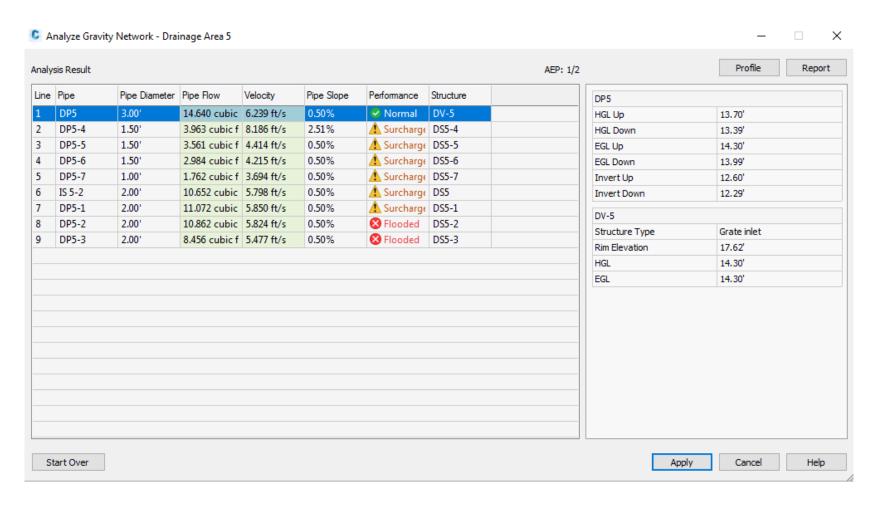
1.00

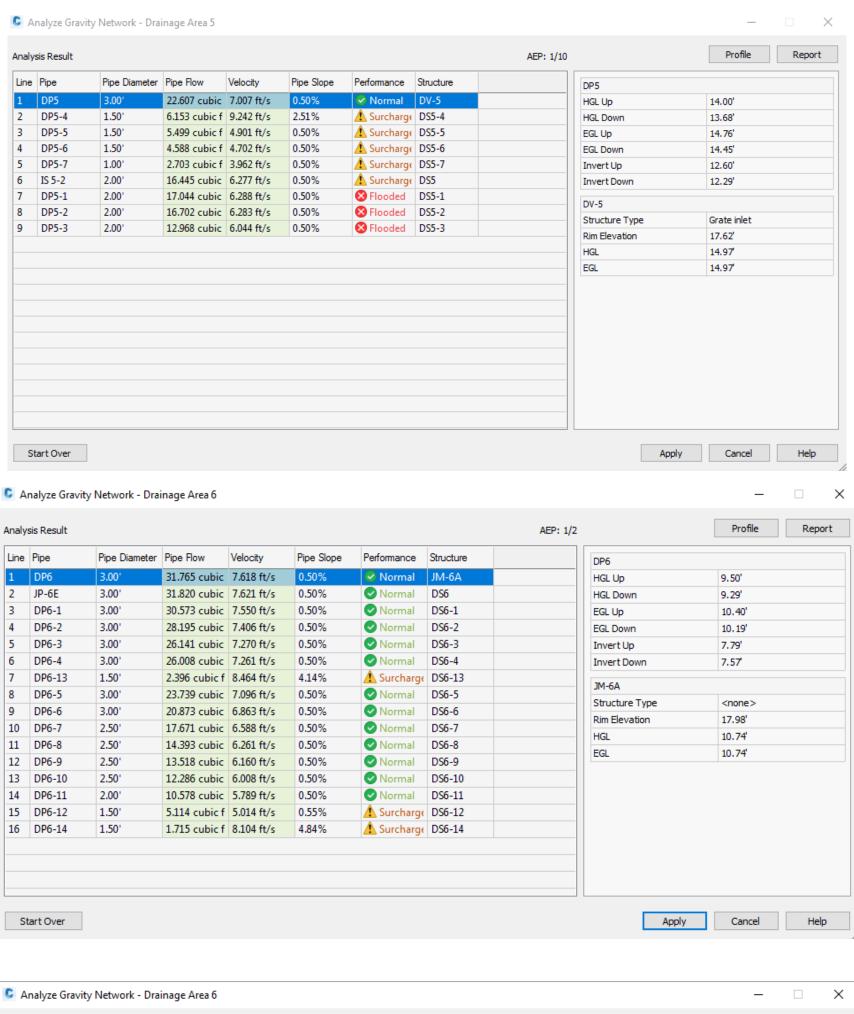
1.00

2.788 cubic f 4.139 ft/s

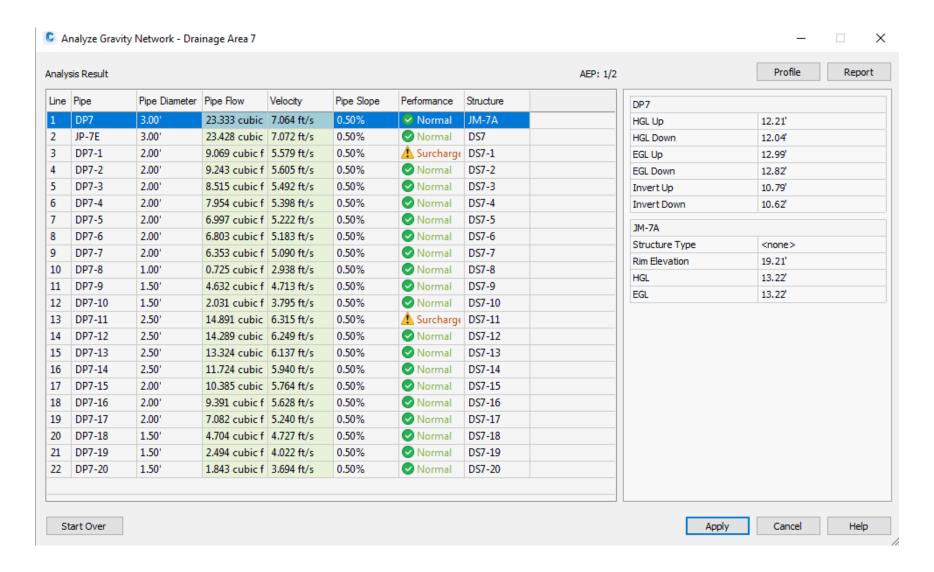

0.631 cubic f 2.826 ft/s

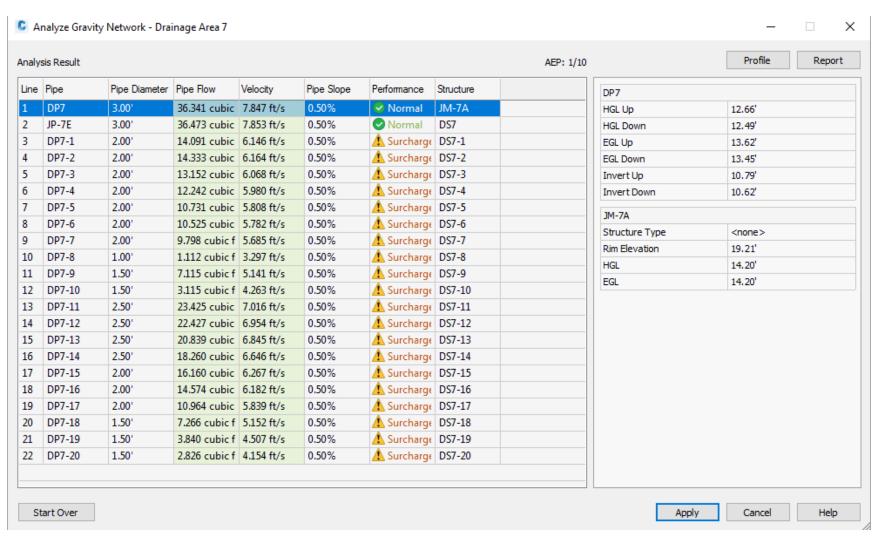

1.451 cubic f 3.528 ft/s


0.50%


0.50%

0.50%





<u>Appendix D</u>

Stormwater Practice Specifications

StormTech® MC-3500

Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

Nominal Chamber Specifications

(not to scale)

Size (L x W x H)

90" x 77" x 45" 2286 mm x 1956 mm x 1143 mm

Chamber Storage 109.9 ft³ (3.11 m³)

Mir. Treatelled Stewar

Min. Installed Storage* 175.0 ft³ (4.96 m³)

Weight 134 lbs (60.8 kg)

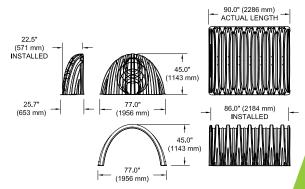
Shipping

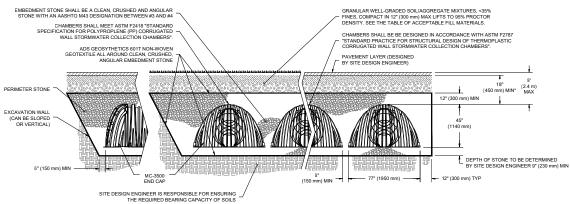
15 chambers/pallet 7 end caps/pallet 7 pallets/truck

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

Nominal End Cap Specifications (not to scale)

Size (L x W x H)26.5" x 71" x 45.1"
673 mm x 1803 mm x 1145 mm


End Cap Storage 14.9 ft³ (0.42 m³)


Min. Installed Storage* 45.1 ft³ (1.28 m³)

Weight

49 lbs (22.2 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 6" (150 mm) of stone between chambers/end caps and 40% stone porosity.

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm

StormTech MC-3500 Specifications

Storage Volume Per Chamber

	Bare Chamber	Chamb	er and Stone Fou	ındation Depth i	n. (mm)
	Storage ft³ (m³)	9 in (230 mm)	12 in (300 mm)	15 in (375 mm)	18 in (450 mm)
Chamber	109.9 (3.11)	175.0 (4.96)	179.9 (5.09)	184.9 (5.24)	189.9 (5.38)
End Cap	14.9 (0.42)	45.1 (1.28)	46.6 (1.32)	48.3 (1.37)	49.9 (1.41)

Note: Assumes 6" (150 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

Amount of Stone Per Chamber

Enalish		Stone Found	lation Depth	
English Tons (yds³)	9 in	12 in	15 in	18 in
Chamber	8.5 (6.0)	9.1 (6.5)	9.7 (6.9)	10.4 (7.4)
End Cap	3.9 (2.8)	4.1 (2.9)	4.3 (3.1)	4.5 (3.2)
Metric Kilograms (m³)	230 mm	300 mm	375 mm	450 mm
Chamber	7711 (4.6)	8255 (5.0)	8800 (5.3)	9435 (5.7)
End Cap	3538 (2.1)	3719 (2.2)	3901 (2.4)	4082 (2.5)

Note: Assumes 12" (300 mm) of stone above and 6" (150 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

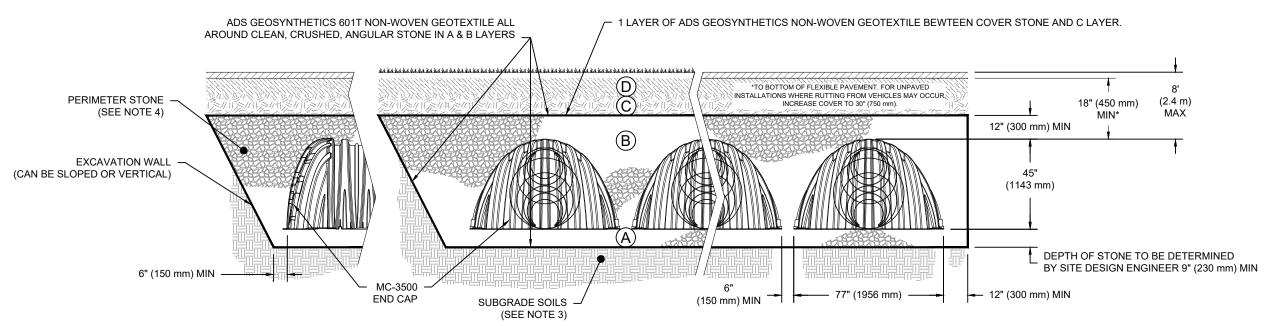
Volume Excavation Per Chamber yd³ (m³)

		Stone Found	lation Depth	
	9 in (230 mm)	12 in (300 mm)	15 in (375mm)	18 in (450 mm)
Chamber	11.9 (9.1)	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)
End Cap	4.0 (3.1)	4.1 (3.3)	4.3 (3.3)	4.4 (3.4)

Note: Assumes 6" (150 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Working on a project?

Visit us at www.stormtech.com and utilize the Design Tool



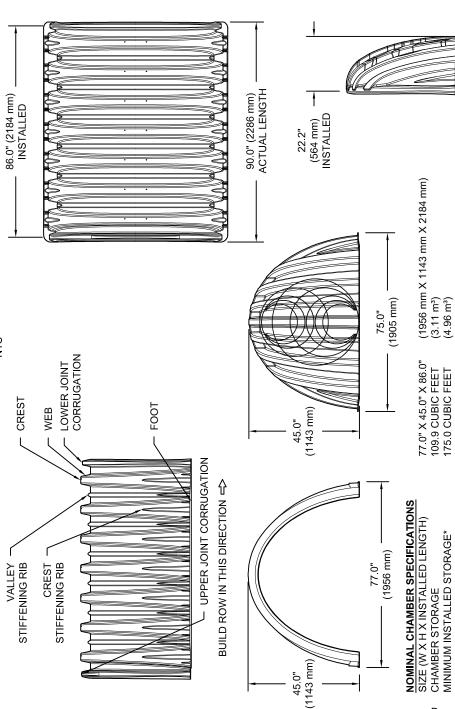
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

PLEASE NOTE:

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

*FOR COVER DEPTHS GREATER THAN 8.0' (2.4 m) PLEASE CONTACT STORMTECH


NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. Page 374 of 831

		G 4444	**						001	
1		4640 I RUEMAN BLVD HILLIARD OH 43026						Ś	MC-3500	
		15020 15020						NOITUES SECED LIEVUNYES	ACITUES SOC	_
S	ADVANCED DRAINAGE SYSTEMS, INC.							מי מאמאוא ויי	000 000	_
HEE			Detention Retention Water Quality					DATE: 05-10-19	05-10-19 DRAWN: KR	
=										
Γ			70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067						5	
			860-529-8188 888-892-2694 WWW.STORMTECH.COM	DATE DRWN CHKD	RWN CH	ΚD	DESCRIPTION	PROJECT #:	CHECKED: KK	
1	THIS DRAWING HAS BEEN PREPARED E	BASED ON INFORMATION PROVID	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMAT RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSIRE THAT THE PRODUCT SIDENCITED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE HANS. REGULATIONS. AND PROJECT REQUIREMENTS.	R OR OTHER APPLICABLE	PROJECT	F REPRESENTA	TIVE. THE SITE DESIGN ENGINEER SHALL AND PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO C	ONSTRUCTION. IT IS THE	ULTIMATI

1 OF

MC-3500 TECHNICAL SPECIFICATION

NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE

WEIGHT

Page 375 of 831

(3.11 m³) (4.96 m³) (60.8 kg)

134 lbs.

NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) END CAP STORAGE MINIMUM INSTALLED STORAGE* WEIGHT

(1905 mm X 1143 mm X 564 mm) 75.0" X 45.0" X 22.2" 14.9 CUBIC FEET 45.1 CUBIC FEET

25.7" (653 mm)

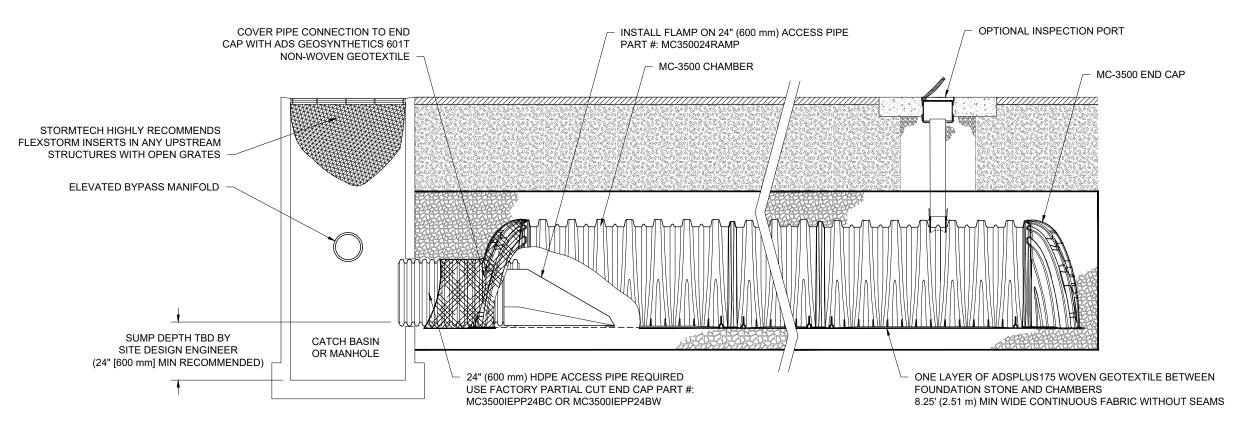
(0.42 m³) (1.28 m³) (22.2 kg) 49 lbs

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" (152 mm) OF STONE BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE

STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

Δ

ပ	I	0.66" (17 mm)		0.81" (21 mm)		0.93" (24 mm)		1.35" (34 mm)	-	1.50" (38 mm)		į	(200 37) "22 1	(111111 C+) 77.1		i.	(2) "30 6	(111111) 20, 00.7	2.75" (70 mm)
В	33.21" (844 mm)	ļ	31.16" (791 mm)	!	29.04" (738 mm)	!	26.36" (670 mm)	ļ	23.39" (594 mm)	!	20.02" (500 252)	(חוווון) (ספס (ספס ב		!	14.48" (368 mm)	(1111)		!	-
STUB	6" (1E) mm)	((200/ 128)	(111111)	(26) "01	(כסס וווווו)	(500 (000)	(300 11111)	15" (275 mm)	() () () () () () () ()		18" (450 mm)	(00+) 01			24" (600 mm)	())) +7		30" (750 mm)
PART#	MC3500IEPP06T	MC3500IEPP06B	MC3500IEPP08T	MC3500IEPP08B	MC3500IEPP10T	MC3500IEPP10B	MC3500IEPP12T	MC3500IEPP12B	MC3500 EPP15T	MC3500IEPP15B	MC3500IEPP18TC	MC3500IEPP18TW	MC3500IEPP18BC	MC3500IEPP18BW	MC3500IEPP24TC	MC3500IEPP24TW	MC3500IEPP24BC	MC3500IEPP24BW	MC3500IEPP30BC


CUSTOM PRECORED INVERTS ARE

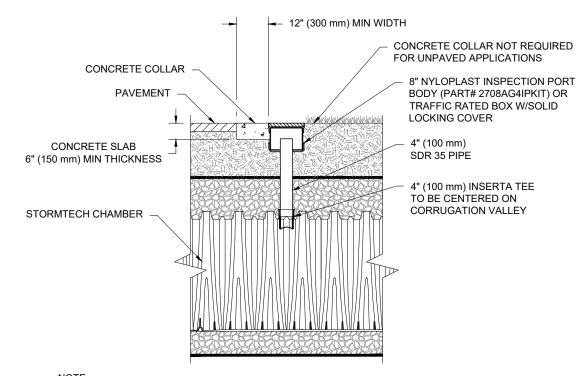
 \circ

ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE INVERT LOCATION IN COLUMN B ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. GREATER THAN 10" (250 mm) THE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm)

POROSITY

NOTE: ALL DIMENSIONS ARE NOMINAL

MC-3500 ISOLATOR ROW PLUS DETAIL


NTS

INSPECTION & MAINTENANCE

- STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
 - A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
 - A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
 - B. ALL ISOLATOR PLUS ROWS
 - B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
 - USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE 3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

NOTE:
INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION VALLEY.

4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER)

1 OF

Storm

4640 TRUEMAN BLVD HILLIARD, OH 43026

ISOLATOR ROW PLUS DETAILS

08/26/20

MC-3500

ΑL

CHECKED:

PROJECT

MC-4500 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH MC-4500 CHAMBER

(not to scale)

Nominal Chamber Specifications

Size (L x W x H)52" x 100" x 60"
1321 mm x 2540 mm x 1524 mm

Chamber Storage 106.5 ft³ (3.01 m³)

Min. Installed Storage* 162.6 ft³ (4.60 m³)

Weight

Nominal 125 lbs (56.7 kg)

Shipping

7 chambers/pallet 5 end caps/pallet 11 pallets/truck

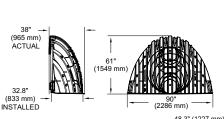
*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

STORMTECH MC-4500 END CAP (not to scale)

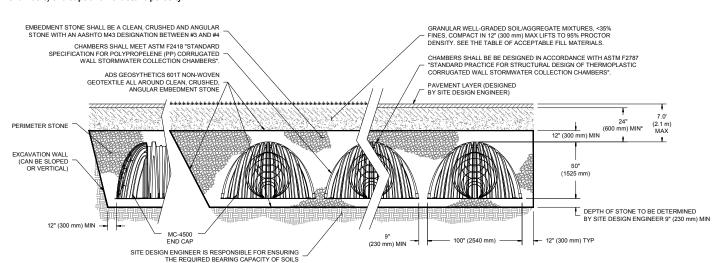
Nominal End Cap Specifications

Size (L x W x H)38" x 90" x 61"
965 mm x 2286 mm x 1549 mm

End Cap Storage 39.5 ft³ (1.12 m³)


Min. Installed Storage* 115.3 ft³ (3.26 m³)

Weight


Nominal 90.0 lbs (40.8 kg)

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 12" (300 mm) of stone perimeter, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

MC-4500 CHAMBER SPECIFICATIONS

STORAGE VOLUME PER CHAMBER FT3 (M3)

	Bare Chamber			r and Stone Depth in. (mm)	
	Storage ft³ (m³)	9" (230 mm)	12" (300 mm)	15" (375 mm)	18" (450 mm)
MC-4500 Chamber	106.5 (3.01)	162.6 (4.60)	166.3 (4.71)	169.9 (4.81)	173.6 (4.91)
MC-4500 End Cap	39.5 (1.12)	115.3 (3.26)	118.6 (3.36)	121.9 (3.45)	125.2 (3.54)

Note: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 12" (300 mm) stone perimeter in front of end cap.

AMOUNT OF STONE PER CHAMBER

ENGLICH TONC (v.d-3)		Stone Foun	dation Depth	
ENGLISH TONS (yds ³)	9"	12"	15"	18"
MC-4500 Chamber	7.4 (5.2)	7.8 (5.5)	8.3 (5.9)	8.8 (6.2)
MC-4500 End Cap	9.8 (7.0)	10.2 (7.3)	10.6 (7.6)	11.1 (7.9)
METRIC KILOGRAMS (m³)	230 mm	300 mm	375 mm	450 mm
MC-4500 Chamber	6713 (4.0)	7076 (4.2)	7529 (4.5)	7983 (4.7)
MC-4500 End Cap	8890 (5.3)	9253 (5.5)	9616 (5.8)	10069 (6.0)

Note: Assumes 12" (300 mm) of stone above and 9" (230 mm) row spacing and 12" (300 mm) of perimeter stone in front of end caps.

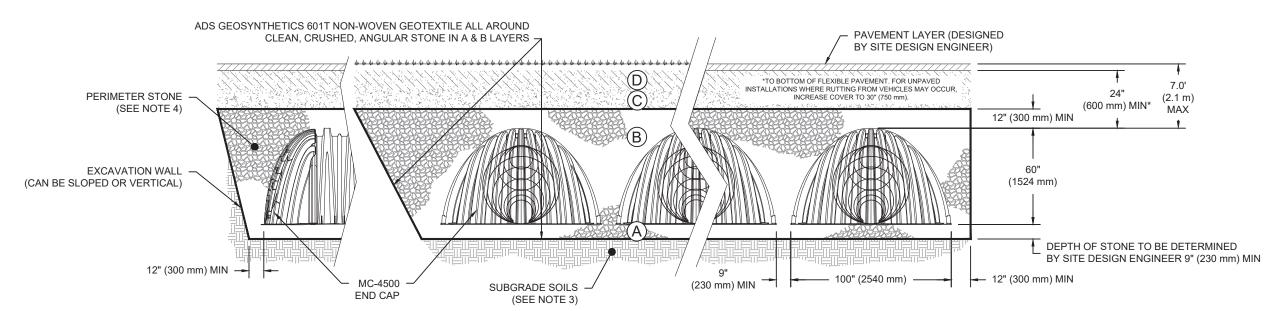
VOLUME EXCAVATION PER CHAMBER YD3 (M3)

		Stone Foun	dation Depth	
	9" (230 mm)	12" (300 mm)	15" (375mm)	18" (450 mm)
MC-4500 Chamber	10.5 (8.0)	10.8 (8.3)	11.2 (8.5)	11.5 (8.8)
MC-4500 End Cap	9.7 (7.4)	10.0 (7.6)	10.3 (7.9)	10.6 (8.1)

Note: Assumes 9" (230 mm) of separation between chamber rows, 12" (300 mm) of perimeter in front of the end caps, and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.

Working on a project? Visit us at www.stormtech.com and utilize the StormTech Design Tool

For more information on the StormTech MC-4500 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710


Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

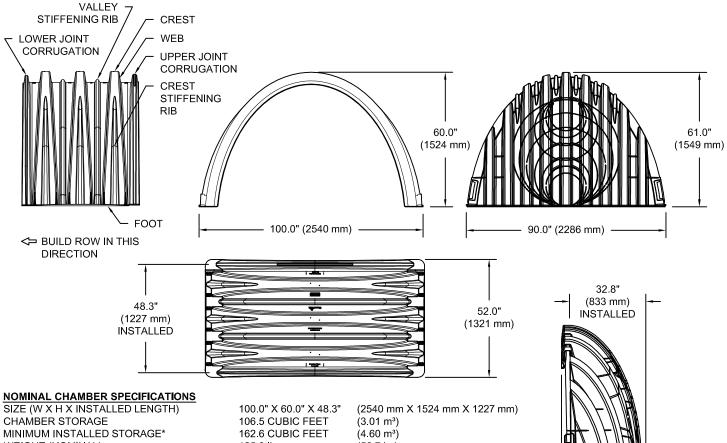
PLEASE NOTE:

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

*FOR COVER DEPTHS GREATER THAN 7.0' (2.1 m) PLEASE CONTACT STORMTECH

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN.


 AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

 Page 379 of 831

0017	MC-4500			DATE: 05-10-19 DRAWN: KR		PROJECT #: CHECKED: KK	HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
						DESCRIPTION	PRESENTATIVE. THE SITE DESIGN ENGINEER SI LATIONS, AND PROJECT REQUIREMENTS.
						DATE DRWN CHKD	PROJECT RE LAWS, REGL
						DATE	ER OR OTHER L APPLICABLE
				L Ř	70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067	860-529-8188 888-892-2694 WWW.STORMTECH.COM	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINE REQUIATIONS, AND PROJECT REQUIREMENTS.
GV IG HANNEL IGH 0200	4040 I KUEMAN BLVD HII IABD OH 43036	3	ADVANCED DRAINAGE SYSTEMS, INC.				3 HAS BEEN PREPARED BASED ON INFORMATION PROVI. TY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH
			SH ADVANCED DR	HEE	 :T		THIS DRAWING RESPONSIBILI

1 OF

MC-4500 TECHNICAL SPECIFICATION

WEIGHT (NOMINAL)

NOMINAL END CAP SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) END CAP STORAGE MINIMUM INSTALLED STORAGE* WEIGHT (NOMINAL)

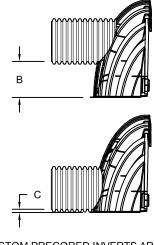
125.0 lbs.

(56.7 kg)

90.0" X 61.0" X 32.8" 39.5 CUBIC FEET 115.3 CUBIC FEET

(2286 mm X 1549 mm X 833 mm)

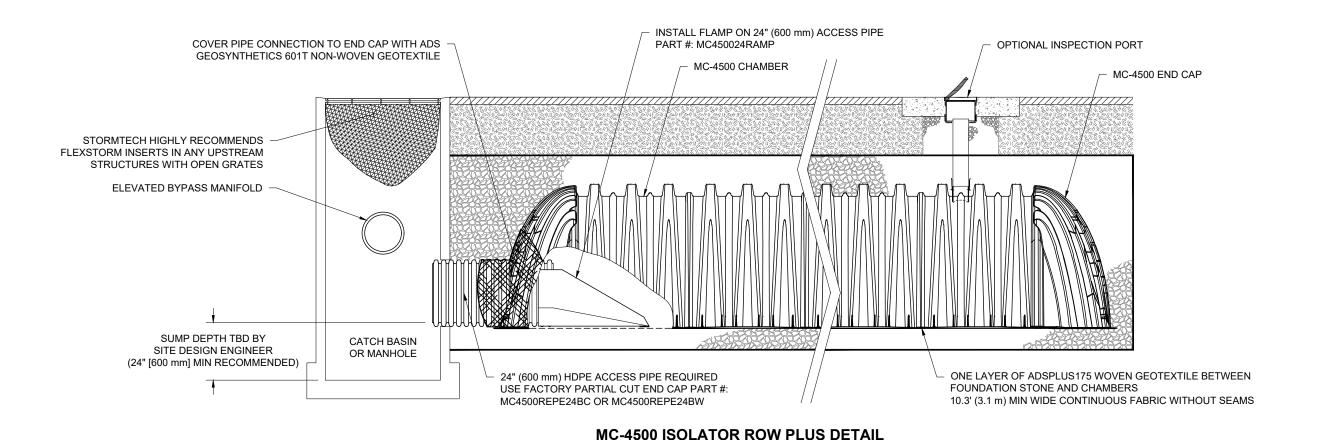
(1.12 m³) (3.26 m³) (40.8 kg)


*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY.

90 lbs.

PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

PART#	STUB	В	С	
MC4500IEPP06T	6" (150 mm)	42.54" (1081 mm)		
MC4500IEPP06B	0 (130 11111)		0.86" (22 mm)	
MC4500IEPP08T	8" (200 mm)	40.50" (1029 mm)		
MC4500IEPP08B	0 (200 11111)		1.01" (26 mm)	
MC4500IEPP10T	10" (250 mm)	38.37" (975 mm)		
MC4500IEPP10B	10 (230 11111)		1.33" (34 mm)	
MC4500IEPP12T	12" (300 mm)	35.69" (907 mm)		
MC4500IEPP12B	12 (300 11111)		1.55" (39 mm)	
MC4500IEPP15T	15" (375 mm)	32.72" (831 mm)		
MC4500IEPP15B	13 (3/311111)		1.70" (43 mm)	
MC4500IEPP18T		29.36" (746 mm)		
MC4500IEPP18TW	18" (450 mm)	29.30 (740 11111)		
MC4500IEPP18B	10 (43011111)		1.97" (50 mm)	
MC4500IEPP18BW		<u></u>	1.97 (30 11111)	
MC4500IEPP24T		23.05" (585 mm)		
MC4500IEPP24TW	24" (600 mm)	23.03 (363 11111)		
MC4500IEPP24B	24 (000 11111)		2.26" (57 mm)	
MC4500IEPP24BW			2.20 (37 11111)	
MC4500IEPP30BW	30" (750 mm)		2.95" (75 mm)	
MC4500IEPP36BW	36" (900 mm)		3.25" (83 mm)	
MC4500IEPP42BW	42" (1050 mm)	-	3.55" (90 mm)	
NOTE: ALL DIMENSIONS	ARE NOMINAL	Page 380 of 83	31	


NOTE: ALL DIMENSIONS ARE NOMINAL

38.0

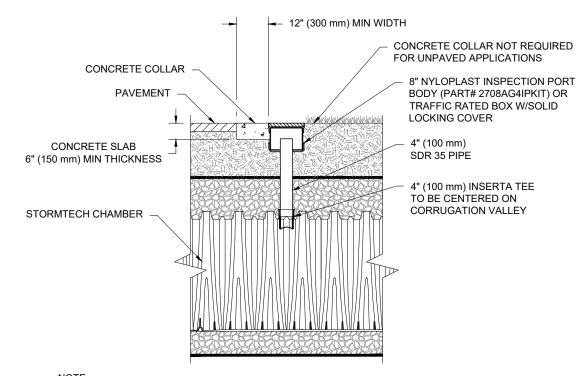
(965 mm)

CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS, CUSTOM INVERT LOCATIONS ON THE MC-4500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

A. INSPECTION PORTS (IF PRESENT)


- A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
- A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.

B. ALL ISOLATOR PLUS ROWS

- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- B.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
- ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
 . IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

NOTE: INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION VALLEY.

4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER)

1 OF

Storm

4640 TRUEMAN BLVD HILLIARD, OH 43026

ISOLATOR ROW PLUS DETAILS

08/26/20

MC-4500

ALI

CHECKED:

PROJECT

The experts you need to

Contech is the leader in stormwater solutions, helping engineers, contractors and owners with infrastructure and land development projects throughout North America.

With our responsive team of stormwater experts, local regulatory expertise and flexible solutions, Contech is the trusted partner you can count on for stormwater management solutions.

Your Contech Team

STORMWATER CONSULTANT

It's my job to recommend the best solution to meet permitting requirements.

STORMWATER DESIGN ENGINEER

I work with consultants to design the best approved solution to meet your project's needs.

REGULATORY MANAGER

I understand the local stormwater regulations and what solutions will be approved.

SALES ENGINEER

I make sure our solutions meet the needs of the contractor during construction.

Setting new standards in Stormwater Treatment – Jellyfish® Filter

The Jellyfish Filter is a stormwater quality treatment technology featuring high flow pretreatment and membrane filtration in a compact stand-alone system. Jellyfish removes floatables, trash, oil, debris, TSS, fine silt-sized particles, and a high percentage of particulate-bound pollutants; including phosphorus, nitrogen, metals and hydrocarbons. The high surface area membrane cartridges, combined with up-flow hydraulics, frequent, passive backwashing, and rinseable/reusable cartridges ensure long-lasting performance.

The Jellyfish Filter has been tested in the field and laboratory, and has received approval from numerous stormwater regulatory agencies.

Jellyfish® Filter

How the Jellyfish® Filter Treats Stormwater

Tested in the field and laboratory ...

- Stormwater enters the Jellyfish through the inlet pipe and traps floating pollutants behind the maintenance access wall and below the cartridge deck.
- Water is conveyed below the cartridge deck where a separation skirt around the cartridges isolates oil, trash and debris outside the filtration zone.
- Water is directed to the filtration zone and up through the top of the cartridge where it exits via the outlet pipe.
- The membrane filters provide a very large surface area to effectively remove fine sand and silt-sized particles, and a high percentage of particulate-bound pollutants such as nitrogen, phosphorus, metals, and hydrocarbons while ensuring long-lasting treatment.
- As influent flow subsides, the water in the backwash pool flows back into the lower chamber. This passive backwash extends cartridge life.
- The draindown cartridge(s) located outside the backwash pool enables water levels to balance.

Learn More:

www.ContechES.com/jellyfish

Pretreat bioretention or infiltration with Jellyfish to extend service life.

APPLICATION TIPS

- The Peak Diversion Jellyfish provides treatment and highflow bypass in one structure, eliminating the need for a separate bypass structure.
- LID and GI are complemented by filtration solutions, as they help keep sites free from fine sediments that can impede performance, remove unsightly trash, and provide a single point of maintenance.
- Selecting a filter with a long maintenance cycle and low maintenance cost will result in healthy waterways and happy property owners.

The pleated tentacles of the Jellyfish® Filter provide a large surface area for pollutant removal.

POLLUTANT OF CONCERN	% REMOVAL	
Total Trash	99%	
Total Suspended Solids (TSS)	89%	
Total Phosphorus (TP)	59%	
Total Nitrogen (TN)	51%	
Total Copper (TCu)	> 50%	
Total Zinc (TZn)	> 50%	

Sources: TARP II Field Study – 2012 JF 4-2-1 Configuration MRDC Floatables Testing – 2008 JF6-6-1 Configuration

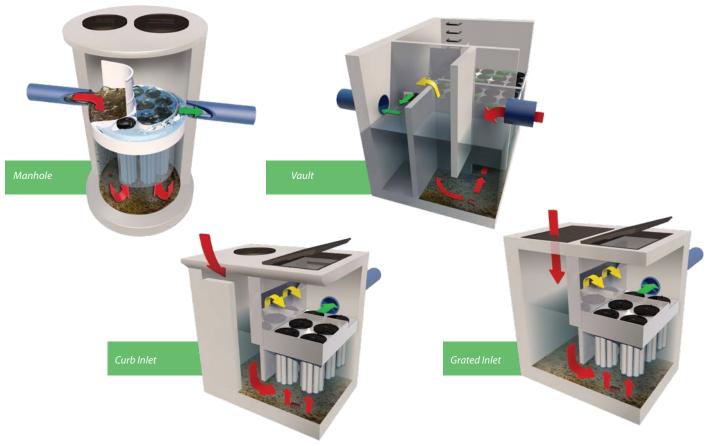
Jellyfish® Filter Features and Benefits

FEATURE	BENEFITS
High surface area membrane filtration	Low flux rate promotes cake filtration and slows membrane occlusion
High design treatment flow rate per cartridge (up to 80 gpm (5 L/s))	Compact system with a small footprint, lower construction cost
Low driving head (typically 18 inches or less (457 mm))	Design flexibility, lower construction cost
Lightweight cartridges with passive backwash	Easy maintenance and low life-cycle cost

The Jellyfish Filter can be configured in a manhole, catch basin, or vault.

Select Jellyfish® Filter Certifications and Verifications

The Jellyfish Filter has been reviewed by numerous state and federal programs, including:


- Washington State Department of Ecology (TAPE) GULD BASIC,
 Phosphorus
- Virginia Department of Environmental Quality (VA DEQ)
- Texas Commission of Environmental Quality (TCEQ)
- Canada ISO 14034 Environmental Management Environmental Technology Verification (ETV)
- Philadelphia Water District (PWD)
- Maryland Department of the Environment (MD DOE)

Jellyfish® Filter Configurations

Multiple system configurations to optimize your site

The Jellyfish Filter can be manufactured in a variety of configurations: manhole, catch basin, vault, fiberglass tank, or custom configurations. Typically, 18 inches (457 mm) of driving head is designed into the system. For low drop sites, the designed driving head can be less.

Jellyfish® Filter Maintenance

- Jellyfish Filter cartridges are light weight and reusable
- Maintenance of the filter cartridges is performed by removing, rinsing and reusing the cartridge tentacles.
- Vacuum extraction of captured pollutants in the sump is recommended at the same time.
- Full cartridge replacement intervals differ by site due to varying pollutant loading and type, and maintenance frequency.

 Replacement is anticipated every 2-5 years.
- Contech® has created a network of Certified Maintenance Providers to provide maintenance on stormwater BMP's.

The Jellyfish® Filter tentacle is light and easy to clean.

A partner

Few companies offer the wide range of highquality stormwater resources you can find with us — state-of-the-art products, decades of expertise, and all the maintenance support you need to operate your system cost-effectively.

THE CONTECH WAY

Contech® Engineered Solutions provides innovative, cost-effective site solutions to engineers, contractors, and developers on projects across North America. Our portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer and stormwater management products.

TAKE THE NEXT STEP

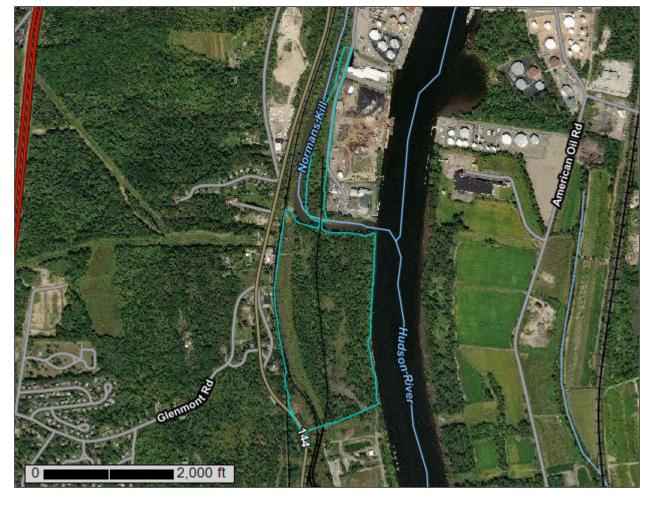
For more information: www.ContechES.com

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO HE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get social with us: 800-338-1122 | www.ContechES.com

Appendix E

NRCS Soils Report



Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Albany County, New York

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Albany County, New York	
HuE—Hudson silt loam, 25 to 45 percent slopes	
NrD—Nassau very channery silt loam, hilly, very rocky	
Ug—Udorthents, loamy	15
Ur—Urban land	
W—Water	
Wo—Wayland soils complex, non-calcareous substratum, 0 to 3	
percent slopes, frequently flooded	17
Soil Information for All Uses	
Soil Properties and Qualities	20
Soil Qualities and Features	
Hydrologic Soil Group	20
References	25

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

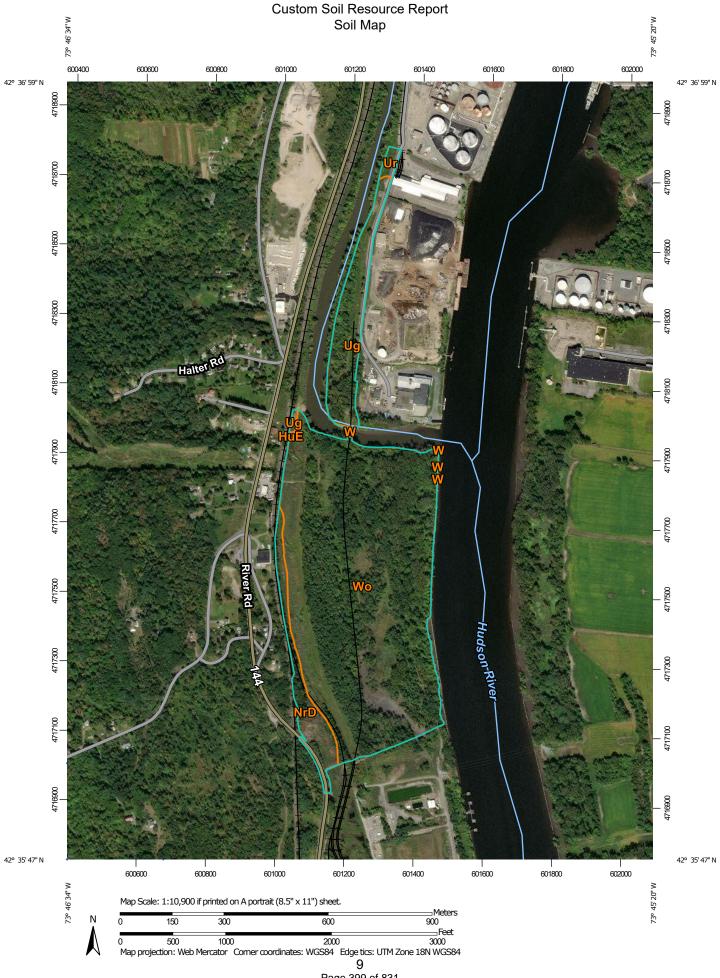
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

⊚ E

Blowout

 \boxtimes

Borrow Pit

366

Clay Spot

 \Diamond

Closed Depression

Š

Gravel Pit

...

Gravelly Spot

0

Landfill

٨.

Lava Flow

Marsh or swamp

衆

Mine or Quarry

0

Miscellaneous Water
Perennial Water

0

Rock Outcrop

+

Saline Spot

...

Sandy Spot

-

Severely Eroded Spot

Sinkhole

&

Slide or Slip

Ø

Sodic Spot

OLIND

8

Spoil Area

۵

Stony Spot

w

Very Stony Spot

8

Wet Spot Other

_

Special Line Features

Water Features

_

Streams and Canals

Transportation

Rails

~

Interstate Highways

US Routes

 \sim

Major Roads

~

Local Roads

Background

The same

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Albany County, New York Survey Area Data: Version 19, Aug 29, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 1, 2014—Sep 22, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
HuE	Hudson silt loam, 25 to 45 percent slopes	0.1	0.1%
NrD	Nassau very channery silt loam, hilly, very rocky	7.2	6.7%
Ug	Udorthents, loamy	11.6	10.7%
Ur	Urban land	0.8	0.8%
W	Water	0.1	0.1%
Wo	Wayland soils complex, non- calcareous substratum, 0 to 3 percent slopes, frequently flooded	88.7	81.7%
Totals for Area of Interest		108.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

Custom Soil Resource Report

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Albany County, New York

HuE—Hudson silt loam, 25 to 45 percent slopes

Map Unit Setting

National map unit symbol: 9pg8 Elevation: 300 to 1,800 feet

Mean annual precipitation: 36 to 41 inches
Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 100 to 170 days

Farmland classification: Not prime farmland

Map Unit Composition

Hudson and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hudson

Setting

Landform: Lake plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Riser

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 11 inches: silt loam
H2 - 11 to 16 inches: silty clay loam
H3 - 16 to 31 inches: silty clay
H4 - 31 to 60 inches: clay

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: C/D

Ecological site: F144AY018NY - Moist Lake Plain

Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

Unadilla

Percent of map unit: 5 percent

Hydric soil rating: No

Colonie

Percent of map unit: 3 percent

Hydric soil rating: No

Udifluvents

Percent of map unit: 1 percent

Hydric soil rating: No

Fluvaquents

Percent of map unit: 1 percent Landform: Flood plains

Hydric soil rating: Yes

NrD—Nassau very channery silt loam, hilly, very rocky

Map Unit Setting

National map unit symbol: 9ph1 Elevation: 600 to 1,800 feet

Mean annual precipitation: 36 to 41 inches
Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 100 to 170 days

Farmland classification: Not prime farmland

Map Unit Composition

Nassau, hilly, and similar soils: 70 percent

Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nassau, Hilly

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Typical profile

H1 - 0 to 8 inches: very channery silt loam H2 - 8 to 16 inches: very channery silt loam H3 - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: D

Ecological site: F144AY033MA - Shallow Dry Till Uplands

Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 9 percent Hydric soil rating: Unranked

Manlius

Percent of map unit: 8 percent

Hydric soil rating: No

Unnamed soils

Percent of map unit: 8 percent

Lordstown

Percent of map unit: 5 percent

Hydric soil rating: No

Ug—Udorthents, loamy

Map Unit Setting

National map unit symbol: 9pj1 Elevation: 0 to 1,640 feet

Mean annual precipitation: 36 to 41 inches
Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 100 to 170 days

Farmland classification: Not prime farmland

Map Unit Composition

Udorthents, loamy, and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents, Loamy

Typical profile

H1 - 0 to 4 inches: loam

H2 - 4 to 70 inches: channery loam

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 5.95 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Low (about 5.5 inches)

Minor Components

Unnamed soils

Percent of map unit: 10 percent

Ur-Urban land

Map Unit Setting

National map unit symbol: 9pj8

Mean annual precipitation: 36 to 41 inches
Mean annual air temperature: 45 to 48 degrees F

Frost-free period: 100 to 170 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Typical profile

H1 - 0 to 6 inches: variable

Minor Components

Unnamed soils

Percent of map unit: 10 percent

Udorthents

Percent of map unit: 5 percent

Hydric soil rating: No

W-Water

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Wo—Wayland soils complex, non-calcareous substratum, 0 to 3 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2srgt Elevation: 160 to 1,970 feet

Mean annual precipitation: 31 to 70 inches Mean annual air temperature: 43 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Wayland and similar soils: 60 percent

Wayland, very poorly drained, and similar soils: 30 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wayland

Setting

Landform: Flood plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Silty and clayey alluvium derived from interbedded sedimentary

rock

Typical profile

Ap - 0 to 9 inches: silt loam
Bg - 9 to 21 inches: silt loam
Cg1 - 21 to 28 inches: silt loam
Cg2 - 28 to 47 inches: silt loam
Cg3 - 47 to 54 inches: silt loam
Cg4 - 54 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: FrequentNone

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Very high (about 13.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Wayland, Very Poorly Drained

Setting

Landform: Flood plains

Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey alluvium derived from interbedded sedimentary

rock

Typical profile

A - 0 to 9 inches: mucky silt loam Bg - 9 to 21 inches: silt loam Cg1 - 21 to 28 inches: silt loam Cg2 - 28 to 47 inches: silt loam Cg3 - 47 to 54 inches: silt loam Cg4 - 54 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: About 0 inches Frequency of flooding: NoneFrequent Frequency of ponding: Frequent

Calcium carbonate, maximum content: 5 percent Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Very high (about 13.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Holderton

Percent of map unit: 10 percent

Landform: Flood plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Hydric soil rating: No

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

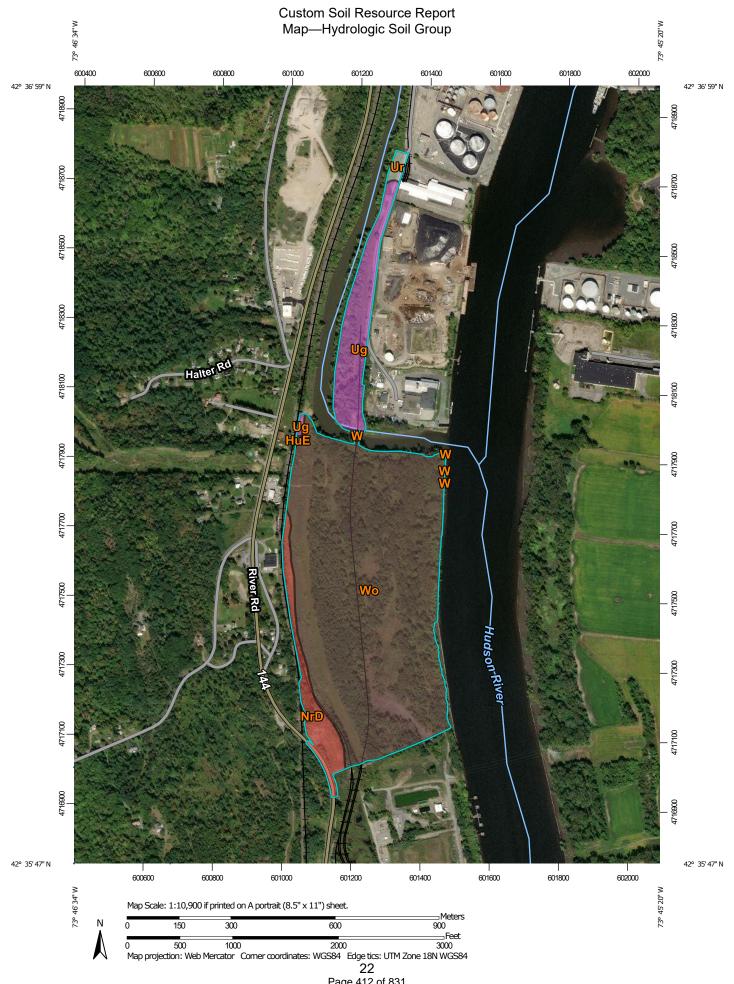
Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:


Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Page 412 of 831

MAP LEGEND MAP INFORMATION Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at С 1:15.800. Area of Interest (AOI) C/D Soils Please rely on the bar scale on each map sheet for map D Soil Rating Polygons measurements. Not rated or not available Α Source of Map: Natural Resources Conservation Service **Water Features** A/D Web Soil Survey URL: Streams and Canals В Coordinate System: Web Mercator (EPSG:3857) Transportation B/D Rails ---Maps from the Web Soil Survey are based on the Web Mercator С projection, which preserves direction and shape but distorts Interstate Highways distance and area. A projection that preserves area, such as the C/D **US Routes** Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. D Major Roads Not rated or not available -Local Roads This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Rating Lines Background Aerial Photography Soil Survey Area: Albany County, New York Survey Area Data: Version 19, Aug 29, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 1, 2014—Sep 22, 2017 The orthophoto or other base map on which the soil lines were Not rated or not available compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor **Soil Rating Points** shifting of map unit boundaries may be evident. Α A/D B/D

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
HuE	Hudson silt loam, 25 to 45 percent slopes	C/D	0.1	0.1%			
NrD	Nassau very channery silt loam, hilly, very rocky	D	7.2	6.7%			
Ug	Udorthents, loamy	A	11.6	10.7%			
Ur	Urban land		0.8	0.8%			
W	Water		0.1	0.1%			
Wo	Wayland soils complex, non-calcareous substratum, 0 to 3 percent slopes, frequently flooded	B/D	88.7	81.7%			
Totals for Area of Interes	st	108.6	100.0%				

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix F

Infiltration Test Results

June 7, 2022

McFarland-Johnson, Inc. 66 Railroad Place – Suite 402 Saratoga Springs, NY 12866

Attn: Mr. Steven Boisvert, P.E.

p: (518) 580-9380 e: sboisvert@mjinc.com

Re: Infiltration Testing

Proposed Marmen Manufacturing Facility

Port of Albany, NY

Terracon Project No. JB215020

Dear Mr. Boisvert:

This report presents the results of the supplemental subsurface investigation and infiltration testing program completed by Terracon at the referenced site.

A total of 21 test borings (IT-1 thru IT-15, along with IT-1A, IT-7A, IT-8A, IT-10A, IT-10B and IT-12A) were completed as part of the investigation, with their locations and depths specified by McFarland-Johnson. Individual subsurface logs for each borehole are attached herewith, along with a subsurface investigation plan(s) indicating their locations.

Infiltration tests were performed adjacent to each of these test borings and were numbered correspondingly. The tests were conducted using 4-inch diameter PVC pipe in general accord with the guidelines in Appendix D of the NYS Stormwater Management Design Manual. Results of this testing are presented for your use on the attached infiltration test data sheets, along with a tabular summary.

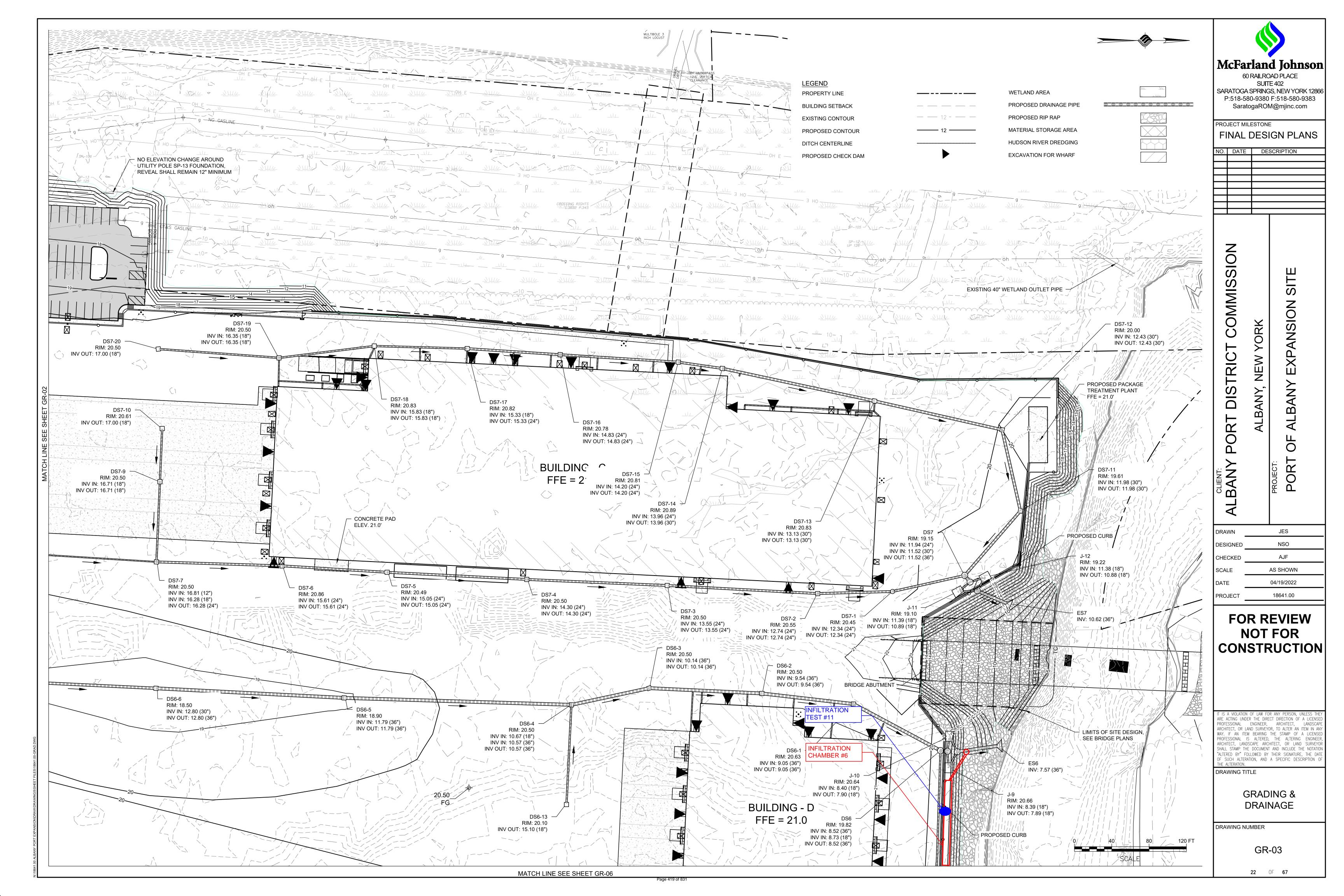
We appreciate the opportunity to be of service on this project. Please contact us at your convenience if you have any questions or if anything further is needed.

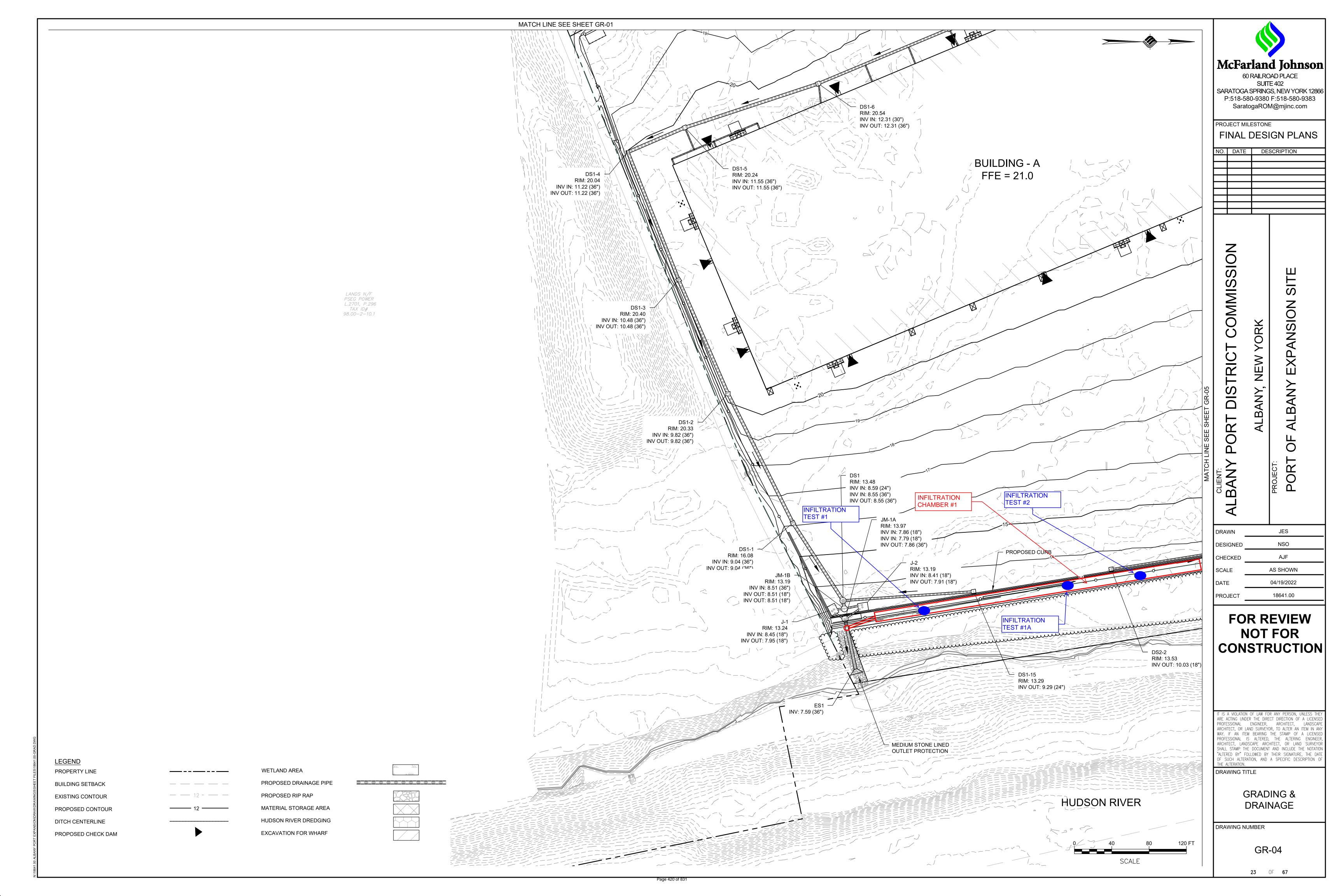
Respectfully,

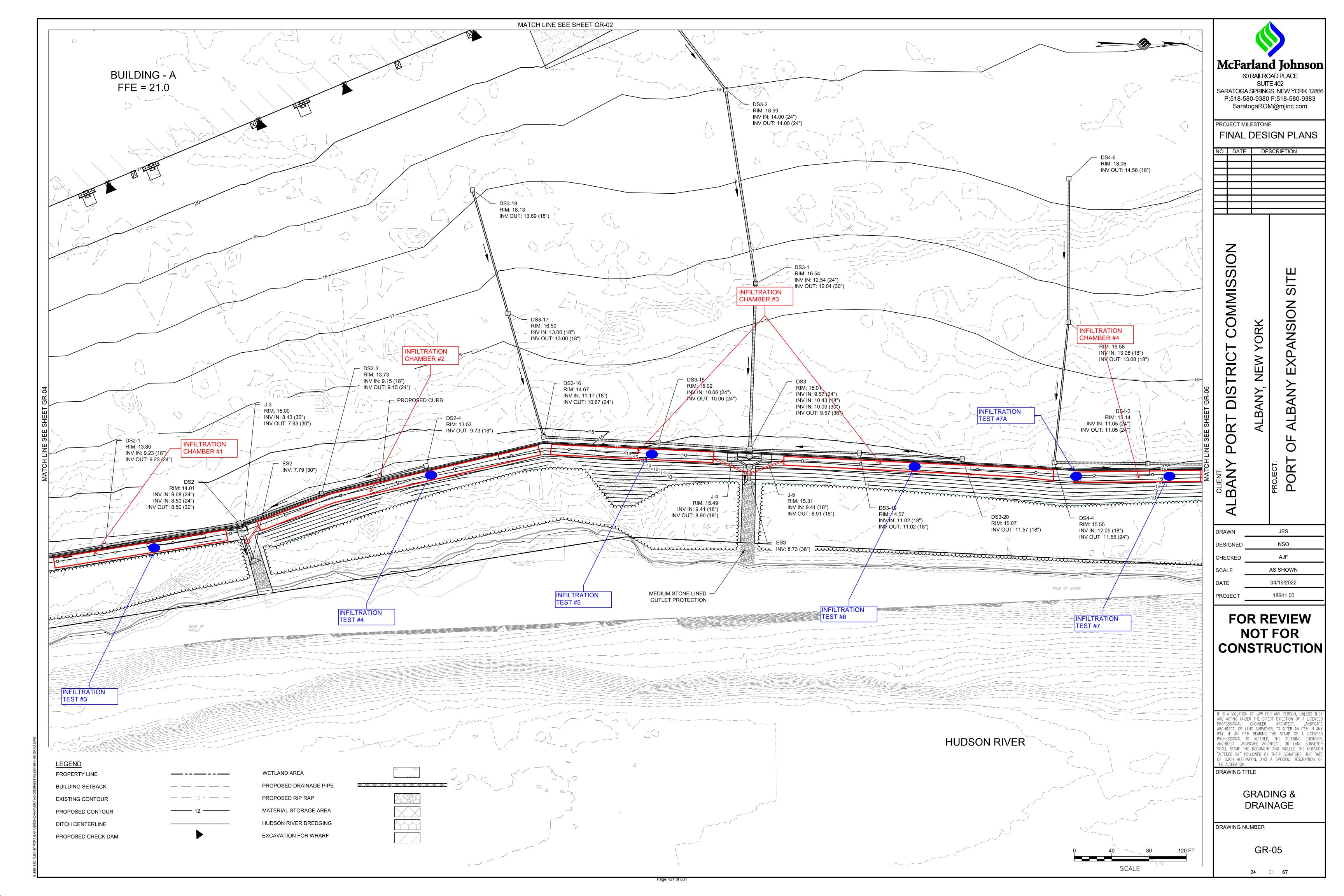
Terracon Consultants - NY, Inc.

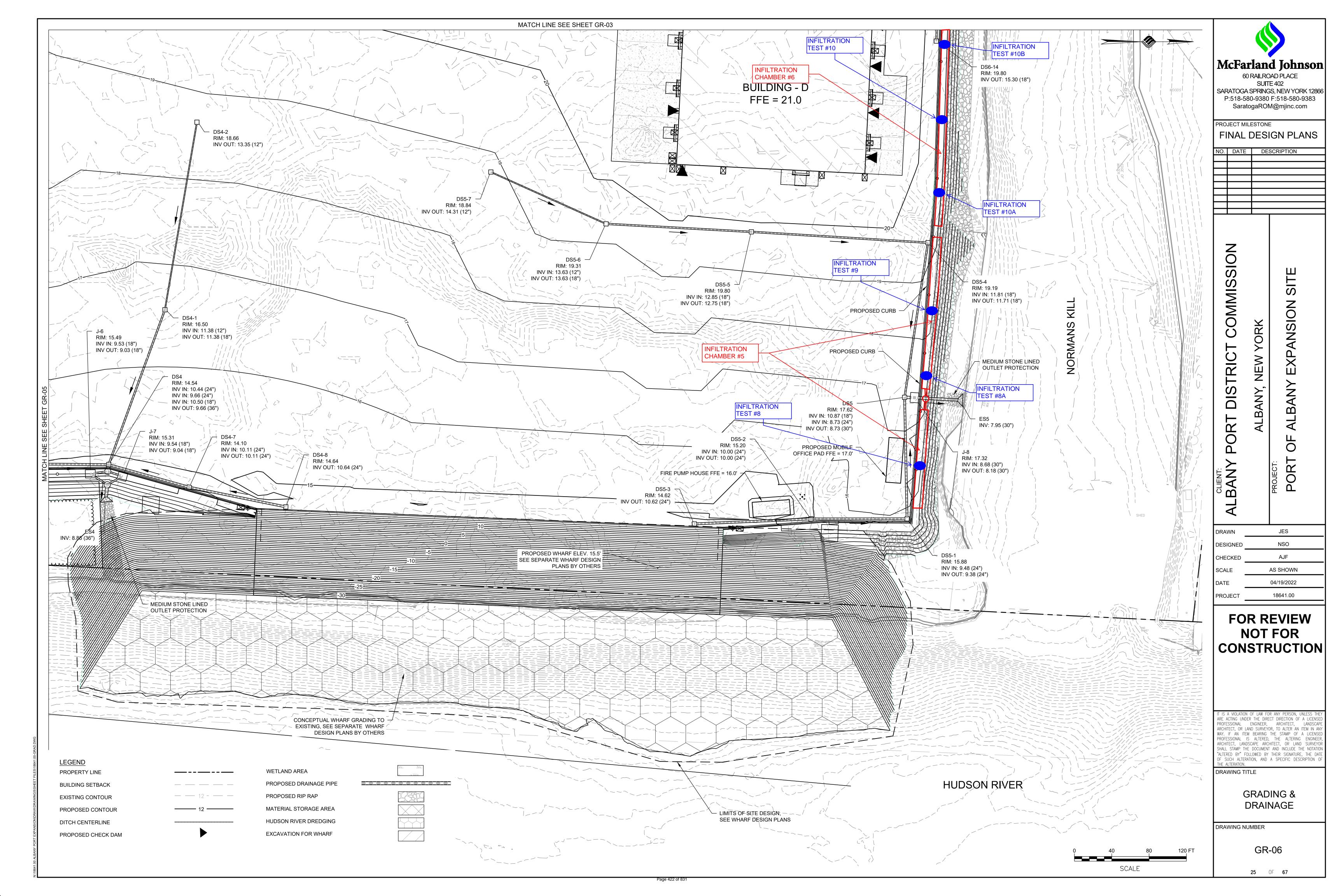
John S. Hutchison, P.E. Senior Geotechnical Engineer Joseph Robichaud, Jr., P.E. Principal / Office Manager

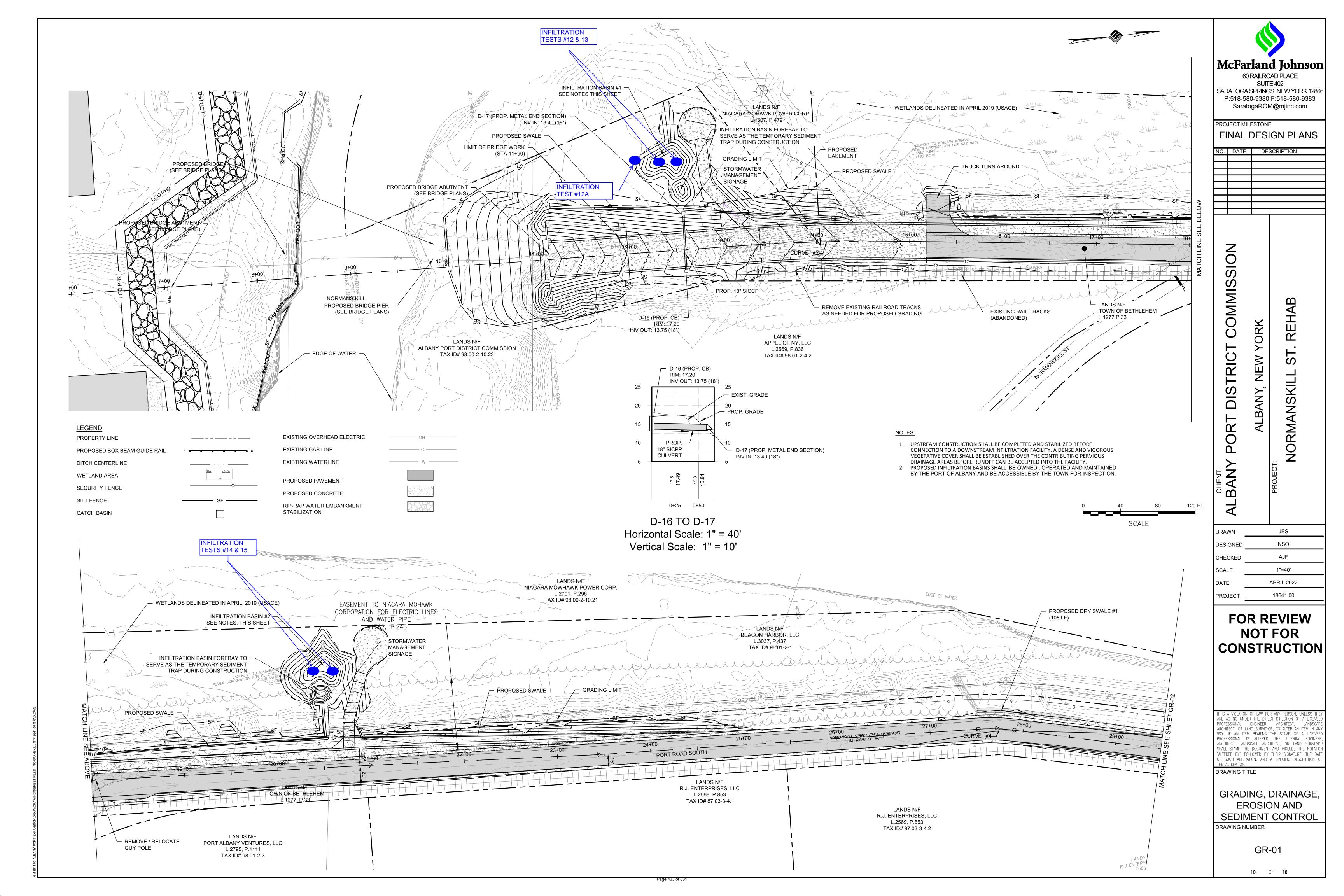
Attachments: - Subsurface investigation plan(s)


- Test boring logs


- Infiltration test results summary table


- Infiltration test data sheets


Terracon Consultants – NY, Inc. 30 Corporate Circle, Suite 201 Albany, NY 12203 p (518) 266-0310 f (518) 266-9238 terracon.com


Environmental - Facilities - Geotechnical - Materials

Port of Albany Expansion Site Infiltration Test Summary Table

	Location			EG Elev. *	Test Depth			Results **	
Test #	Northing	Easting	Lat	Long	(ft)	(ft)	Test Elev.	Test Date	(in/hr)
IT-1	1373126.03	690476.39	N042° 36' 00.83"	W073° 45' 47.69"	16.6	10.0	6.6	5/12/2022	1.7
IT-1A	1373285.45	690441.73	N042° 36' 02.41"	W073° 45' 48.14"	14.3	8.0	6.3	5/18/2022	1.7
IT-2	1373428.1	690427.42	N042° 36' 03.82"	W073° 45' 48.31"	15.3	9.0	6.3	5/12/2022	0
IT-3	1373669.92	690372.95	N042° 36' 06.21"	W073° 45' 49.01"	10.8	4.5	6.3	5/13/2022	0.2
IT-4	1373828.59	690333.82	N042° 36' 07.78"	W073° 45' 49.51"	12.8	6.5	6.3	5/12/2022	0.2
IT-5	1374016.28	690316.2	N042° 36' 09.64"	W073° 45' 49.73"	9.1	2.5	6.6	5/12/2022	-0.2
IT-6	1374286.56	690329.4	N042° 36' 12.31"	W073° 45' 49.52"	10.7	4.0	6.7	5/13/2022	0
IT-7	1374550.28	690339.68	N042° 36' 14.91"	W073° 45' 49.35"	9.6	3.0	6.6	5/13/2022	1.2
IT-7A	1374449.39	690328.11	N042° 36' 13.92"	W073° 45' 49.52"	11.2	5.0	6.2	5/18/2022	0.5
IT-8	1375558.9	690328.24	N042° 36' 24.88"	W073° 45' 49.39"	12.4	6.0	6.4	5/12/2022	2.6
IT-8A	1375555.8	690230.63	N042° 36' 24.86"	W073° 45' 50.69"	14.8	7.0	7.8	5/18/2022	0.4
IT-9	1375569.02	690181.72	N042° 36' 24.99"	W073° 45' 51.35"	13.6	7.0	6.6	5/13/2022	0.1
IT-10	1375581.89	689989.53	N042° 36' 25.13"	W073° 45' 53.91"	17.3	11.0	6.3	5/13/2022	1.2
IT-10A	1375579.21	690067.6	N042° 36' 25.10"	W073° 45' 52.87"	17.4	11.0	6.4	5/18/2022	0
IT-10B	1375586.34	689908.31	N042° 36' 25.18"	W073° 45' 55.00"	16.7	9.5	7.2	5/18/2022	0
IT-11	1375587.41	689824.53	N042° 36' 25.20"	W073° 45' 56.12"	15.4	9.0	6.4	5/12/2022	0.1
IT-12	1376092.03	689570.93	N042° 36' 30.21"	W073° 45' 59.45"	14.0	6.0	8.0	5/13/2022	0.5
IT-12A	1376065.55	689567.77	N042° 36' 29.95"	W073° 45' 59.50"	12.7	4.0	8.7	5/18/2022	8.6
IT-13	1376115.27	689572.99	N042° 36' 30.44"	W073° 45' 59.42"	14.6	6.5	8.1	5/13/2022	0.1
IT-14	1376905.51	689652.3	N042° 36' 38.24"	W073° 45' 58.27"	5.8	1.0	4.8	5/13/2022	12.4
IT-15	1376922.65	689655.08	N042° 36' 38.41"	W073° 45' 58.23"	5.8	1.0	4.8	5/13/2022	>24

^{*} Note EG elevations may have changed from the tree clearing work.

^{**} Represents result of final trial at each location.

INFILTRATION TEST RESULTS							
PROJECT: Proposed Marmen Manufacturing Facility				PROJECT NO. JB215020			
PROJECT LOCATION: t/o Bethlehem, NY				TEST DATE : May 12 and 13, 2022			
WEATHER: M. Sunny 70°-80° F				TESTER: J. Hutchison, et al.			
Test Location	Test Depth (feet)	Trial No.	Water Drop (ft)	Elapsed Time (min)	Infiltration Rate (inches/hour)		
	10.0	1	0.12	60	1.4		
		2	0.12	60	1.4		
IT-1		3	0.15	60	1.8		
		4	0.14	60	1.7		
		NOTE: Infiltration rate during final trial run = 1.7 inches per hour					
	9.0	1	0.07	60	0.8		
		2	0.00	60	0.0		
IT-2		3	-	-	-		
		4	-	-	-		
		NOTE: Infiltration rate during final trial run = 0.0 inches per hour					
IT-3	4.5	1	0.02	60	0.2		
		2	-	-	-		
		3	-	-	-		
		4	-	-	-		
Natasi		NOTE: Infiltration rate during final trial run = 0.2 inches per hour					

Notes:

- 1) Testing was conducted in general accord with the "Infiltration Testing Requirements" outlined in Appendix D of the New York State Stormwater Management Design Manual.
- 2) Infiltration tests were located alongside companion test borings numbered correspondingly.

SOIL CLASSIFICATION AT TEST DEPTH

Test Location IT-1 – Fill (coal ash w/ crushed stone and slag)

Test Location IT-2 – Sandy silt (ML)

Test Location IT-3 - Silt (ML)

Terracon Consultants – NY, Inc. 30 Corporate Circle, Suite 201 Albany, NY 12203 p (518) 266-0310 f (518) 266-9238 terracon.com

Environmental Facilities Geotechnical Materials

INFILTRATION TEST RESULTS							
PROJECT: Proposed Marmen Manufacturing Facility				PROJECT NO. JB215020			
PROJECT LOCATION: t/o Bethlehem, NY				TEST DATE: May 12 and 13, 2022			
WEATHER: M. Sunny 70°-80° F				TESTER: J. Hutchison, et al.			
Test Location	Test Depth (feet)	Trial No.	Water Drop (ft)	Elapsed Time (min)	Infiltration Rate (inches/hour)		
	6.5	1	0.06	60	0.7		
		2	0.02	60	0.2		
IT-4		3	-	-	-		
		4	-	-	-		
		NOTE: Infiltration rate during final trial run = 0.2 inches per hour					
	2.5	1	0.02	60	0.8		
		2	-0.02	60	-0.2		
IT-5		3	-	-	-		
		4	-	-	-		
		NOTE: Infiltration rate during final trial run = -0.2 inches per hour					
IT-6	4.0	1	0.00	60	0.0		
		2	-	-	-		
		3	-	-	-		
		4	-	-	-		
Natasi		NOTE: Infiltration rate during final trial run = 0.0 inches per hour					

Notes:

- 1) Testing was conducted in general accord with the "Infiltration Testing Requirements" outlined in Appendix D of the New York State Stormwater Management Design Manual.
- 2) Infiltration tests were located alongside companion test borings numbered correspondingly.

SOIL CLASSIFICATION AT TEST DEPTH

Test Location IT-4 – Silt and clay (CL-ML)

Test Location IT-5 - Silt (ML)

Test Location IT-6 – Silt w/ sand (ML)

Terracon Consultants – NY, Inc. 30 Corporate Circle, Suite 201 Albany, NY 12203 p (518) 266-0310 f (518) 266-9238 terracon.com

Environmental Facilities Geotechnical Materials

INFILTRATION TEST RESULTS							
PROJECT: Proposed Marmen Manufacturing Facility				PROJECT NO. JB215020			
PROJECT LOCATION: t/o Bethlehem, NY				TEST DATE : May 12 and 13, 2022			
WEATHER: M. Sunny 70°-80° F				TESTER: J. Hutchison, et al.			
Test Location	Test Depth (feet)	Trial No.	Water Drop (ft)	Elapsed Time Infiltration R (min) (inches/hou			
	3.0	1	0.14	60	1.7		
		2	0.22	60	2.6		
IT-7		3	0.10	60	1.2		
		4	-	-	-		
		NOTE: Infiltration rate during final trial run = 1.2 inches per hour					
	6.0	1	0.29	60	3.5		
		2	0.23	60	2.8		
IT-8		3	0.23	60	2.8		
		4	0.22	60	2.6		
		NOTE: Infiltration rate during final trial run = 2.6 inches per hour					
IT-9	7.0	1	0.01	60	0.1		
		2	0.01	60	0.1		
		3	0.01	60	0.1		
		4	0.01	60	0.1		
Notes		NOTE: Infiltration rate during final trial run = 0.1 inches per hour					

Notes:

- 1) Testing was conducted in general accord with the "Infiltration Testing Requirements" outlined in Appendix D of the New York State Stormwater Management Design Manual.
- 2) Infiltration tests were located alongside companion test borings numbered correspondingly.

SOIL CLASSIFICATION AT TEST DEPTH

Test Location IT-7 - Silt (ML)

Test Location IT-8 - Silty sand (SM)

Test Location IT-9 – Silt with sand (ML)

Terracon Consultants – NY, Inc. 30 Corporate Circle, Suite 201 Albany, NY 12203 p (518) 266-0310 f (518) 266-9238 terracon.com

Environmental Facilities Geotechnical Materials